【題目】如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度,得到△ADE,此時(shí)點(diǎn)C恰好在線段DE上,若∠B=40°,∠CAE=60°,則∠DAC的度數(shù)為(
A.15°
B.20°
C.25°
D.30°

【答案】B
【解析】解:由旋轉(zhuǎn)的性質(zhì)得:△ADE≌△ABC, ∴∠D=∠B=40°,AE=AC,
∵∠CAE=60°,
∴△ACE是等邊三角形,
∴∠ACE=∠E=60°,
∴∠DAE=180°﹣∠E﹣∠D=80DU
= (180°﹣∠CAE)= (180°﹣60°)=80°,
∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;
故選:B.
由旋轉(zhuǎn)的性質(zhì)得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,證出△ACE是等邊三角形,得出∠ACE=∠E=60°,由三角形內(nèi)角和定理求出∠DAE的度數(shù),即可得出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1cm,AC是對(duì)角線,AE平分∠BAC,EF⊥AC于F.
(1)求證:BE=EF.
(2)求tan∠EAF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10m=5,10n=3,則102m+3n=   

【答案】675.

【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,

故答案為:675.

點(diǎn)睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運(yùn)算方法,可得102m×103n=(10m2×(10n3,最后把10m=5,10n=2代入化簡(jiǎn)后的算式,求出102m+3n的值是多少即可.

型】填空
結(jié)束】
17

【題目】A、B兩地相距450千米,甲、乙兩車分別從A、B兩地同時(shí)出發(fā),相向而行.已知甲車的速度為100千米/時(shí),乙車的速度為80千米/時(shí),___________小時(shí)后兩車相距30千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c過點(diǎn)A(﹣3,0),對(duì)稱軸為x=﹣1.給出四個(gè)結(jié)論:①b2>4ac,②2a+b=0;③a﹣b+c=0;④5a<b.其中正確結(jié)論是(
A.②④
B.①④
C.②③
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程(x-2)-(4x-1)=4.

【答案】x=-.

【解析】

方程兩邊都乘以6去分母后,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1即可求出解.

去分母得:3(x-2)-2(4x-1)=24,

去括號(hào)得:3x-6-8x+2=24,

移項(xiàng)合并得:-5x=28,

解得:x=-.

【點(diǎn)睛】

此題考查了解一元一次方程,其步驟為:去分母,去括號(hào),移項(xiàng)合并,將x系數(shù)化為1,求出解.

型】解答
結(jié)束】
22

【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A、B分別在反比例函數(shù)y= (x>0),y=﹣ (x>0)的圖象上,且OA⊥OB,則tanB為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1是由5個(gè)完全相同的正方體搭成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至圖2所示的位置,下列說法中正確的是( )
①左、右兩個(gè)幾何體的主視圖相同
②左、右兩個(gè)幾何體的俯視圖相同
③左、右兩個(gè)幾何體的左視圖相同.

A.①②③
B.②③
C.①②
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,AB=2,現(xiàn)將一塊三角板的直角頂點(diǎn)放在AB的中點(diǎn)D處,兩直角邊分別與直線AC,直線BC相交于點(diǎn)E,F(xiàn),我們把DE⊥AC時(shí)的位置定為起始位置(如圖1),將三角板繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)一個(gè)角度α(0°<α<90°).

(1)如圖2,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)E在線段AC上時(shí),試判別△DEF的形狀,并說明理由;

(2)設(shè)直線ED交直線BC于點(diǎn)G,在旋轉(zhuǎn)過程中,是否存在點(diǎn)G,使得△EFG為等腰三角形?若存在,求出CG的長(zhǎng),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由4個(gè)正方體搭成的幾何體按如圖放置,若要求畫出它的三視圖,則在所畫的俯視圖中正方形共有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案