【題目】如圖,在矩形 ABCD 中,AB=6cm,BC=8cm,動點 P 以 2cm/s 的速度從點 A 出發(fā),沿AC 向點 C 移動,同時動點 Q 以 1cm/s 的速度從點 C 出發(fā),沿 CB 向點 B 移動,設 P、Q 兩點移動 ts(0<t<5)后,△CQP 的面積為 Scm2.在 P、Q 兩點移動的過程中,△CQP 的面積能否等于 3.6cm2?若能,求出此時 t 的值;若不能,請說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】家庭過期藥品屬于“國家危險廢物”處理不當將污染環(huán)境,危害健康.某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機抽樣調(diào)查.
設計調(diào)查方式:
(1)有下列選取樣本的方法
①在市中心某個居民區(qū)以家庭為單位隨機抽取
②在全市醫(yī)務工作者中以家庭為單位隨機抽取
③在全市常住人口中以家庭為單位隨機抽取.
其中最合理的一種是 .(只需填上正確答案的序號)
收集整理數(shù)據(jù):
本次抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關數(shù)據(jù)呈現(xiàn)如下表:
處理 方式 | A 繼續(xù)使用 | B 直接丟棄 | C 送回收點 | D 擱置家中 | E 賣給藥販 | F 直接焚燒 |
所占比例 | 8% | 51% | 10% | 20% | 6% | 5% |
描述數(shù)據(jù):
(2)此次抽樣的樣本數(shù)為1000戶家庭,請你繪制條形統(tǒng)計圖描述各種處理過期藥品方式的家庭數(shù);
分析數(shù)據(jù):
(3)根據(jù)調(diào)查數(shù)據(jù),你認為該市市民家庭處理過期藥品最常見的方式是什么?說明你的理由;
(4)家庭過期藥品的正確處理方式是送回收點,若該市有500萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設點B(4,4),點P(t,0)是x軸上一動點,過點O作OH⊥AP于點H,直線OH交直線BC于點D,連AD.
(1)如圖1,當點P在線段OC上時,求證:OP=CD;
(2)在點P運動過程中,△AOP與以A、B、D為頂點的三角形相似時,求t的值;
(3)如圖2,拋物線y=﹣x2+x+4上是否存在點Q,使得以P、D、Q、C為頂點的四邊形為平行四邊形?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某海域有兩個海拔均為200米的海島A和海島B,一勘測飛機在距離海平面垂直高度為1100米的空中飛行,飛行到點C處時測得正前方一海島頂端A的俯角是45°,然后沿平行于AB的方向水平飛行1.99×104米到達點D處,在D處測得正前方另一海島頂端B的俯角是60°,求兩海島間的距離AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小鵬學完解直角三角形知識后,給同桌小艷出了一道題:“如圖所示,把一張長方形卡片ABCD放在每格寬度都為6mm的橫格紙中,恰好四個頂點都在橫格線上,已知a=36°,求長方形卡片的周長.”請你幫小艷解答這道題.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結BE交MN于點F.已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標;
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃組織九年級師生去韶山舉行畢業(yè)聯(lián)歡活動.下面是年級組長李老師和小芳、小明同學有關租車問題的對話:
李老師:“平安客運公司有60座和45座兩種型號的客車可供租用,60座客車每輛每天的租金比45座的貴200元.”
小芳:“我們學校八年級師生昨天在這個客運公司租用4輛60座和2輛45座的客車到韶山參觀,一天的租金共計5000元.”
小明:“我們九年級師生租用5輛60座和1輛45座的客車正好坐滿.”
根據(jù)以上對話,解答下列問題:
(1)平安客運公司60座和45座的客車每輛每天的租金分別是多少元?
(2)按小明提出的租車方案,九年級師生到該公司租車一天,共需租金多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖并填空
如圖,在Rt△ABC,∠BAC=90°,AD⊥BC于D,在②③圖中,MN=AB,∠MNE=∠B,現(xiàn)要以②③圖為基礎,在射線NE上確定一點P,構造出一個△MNP與①圖中某一個三角形全等.
(1)用邊長限制P點,畫法:_____,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
(2)用直角限制點P,畫法:_______,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com