【題目】如圖,拋物線(xiàn)x軸交于A,B兩點(diǎn),它們的對(duì)稱(chēng)軸與x軸交于點(diǎn)N,過(guò)頂點(diǎn)MMEy軸于點(diǎn)E,連結(jié)BEMN于點(diǎn)F.已知點(diǎn)A的坐標(biāo)為(﹣10.

1)求該拋物線(xiàn)的解析式及頂點(diǎn)M的坐標(biāo);

2)求△EMF△BNF的面積之比.

【答案】1,(1,4);(2.

【解析】試題分析:(1)直接將(﹣10)代入求出即可,再利用配方法求出頂點(diǎn)坐標(biāo).

2)利用EM∥BN,則△EMF∽△BNF,進(jìn)而求出△EMF△BNE的面積之比.

試題解析:解:(1點(diǎn)A在拋物線(xiàn)上,

,解得:c=3,

拋物線(xiàn)的解析式為.

,

拋物線(xiàn)的頂點(diǎn)M1,4);

2∵A﹣10),拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1點(diǎn)B3,0.

∴EM=1,BN=2.

EMBN,∴△EMF∽△BNF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)L上有三個(gè)正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】―拋物線(xiàn)與x軸的交點(diǎn)是A(2,0),B(10),且經(jīng)過(guò)點(diǎn)C(28)

(1)求該拋物線(xiàn)的解析式;

(2)求該拋物線(xiàn)的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知鈍角三角形ABC,將ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)110°得到AB′C′,連接BB′,若AC′BB′,則∠CAB′的度數(shù)為( )

A. 55°B. 65°C. 85°D. 75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理是人類(lèi)最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書(shū)《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�