【題目】如圖,在四邊形ABCD中,AD∥BC,且AD>BC,BC=6 cm,動點P,Q分別從A,C同時出發(fā),P以1 cm/s的速度由A向D運動,Q以2cm/s的速度由C向B運動(Q運動到B時兩點同時停止運動),則________后四邊形ABQP為平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C的坐標(biāo)是1,1,那么點A、B、D的坐標(biāo)分別為:A(______), _____),B(______), _____),D(______), _____).其中,橫坐標(biāo)相等的點有______和_____,_____和_____.A、B、C、D四個點組成的圖形是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC= .將矩形ABCD繞點A逆時針旋轉(zhuǎn)至矩形AB′C′D′,使得點B′恰好落在對角線BD上,連接DD′,則DD′的長度為( )
A.
B.
C. +1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是4,點E是BC的中點,連接DE,DF⊥DE交BA的延長線于點F.連接EF、AC,DE、EF分別與C交于點P、Q,則PQ=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2017年3月起,成都市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第I級:居民每戶每月用水18噸以內(nèi)含18噸每噸收水費a元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標(biāo)準(zhǔn)收費,超過部分每噸收水費b元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第I、Ⅱ級標(biāo)準(zhǔn)收費,超過部分每噸收水費c元.
設(shè)一戶居民月用水x噸,應(yīng)繳水費為y元,y與x之間的函數(shù)關(guān)系如圖所示
(1)根據(jù)圖象直接作答:a= ,b= ;
(2)求當(dāng)x≥25時y與x之間的函數(shù)關(guān)系;
(3)把上述水費階梯收費辦法稱為方案①,假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費,請你根據(jù)居民每戶月“用水量的大小設(shè)計出對居民繳費最實惠的方案.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1的側(cè)棱長和底面各邊長均為2,其主視圖是邊長為2的正方形,則此直三棱柱左視圖的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與思考:一張邊長為a的正方形桌面,因為實際需要,需將正方形邊長增加b,從而得到一個更大的正方形,木工師傅設(shè)計了如圖所示的方案:
(1)方案中大正方形的邊長都是 ,所以面積為 ;
(2)小明還發(fā)現(xiàn):方案中大正方形的面積還可以用四塊小四邊形的面積和來表示 ;
(3)你有什么發(fā)現(xiàn),請用數(shù)學(xué)式子表達 ;
(4)利用(3)的結(jié)論計算20.182+2×20.18×19.82+19.822的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國明代珠算家程大位的名著《直指算法統(tǒng)宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾?”意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,試問大、小和尚各多少人?設(shè)大和尚有x人,依題意列方程得( 。
A. +3(100﹣x)=100 B. ﹣3(100﹣x)=100
C. 3x﹣=100 D. 3x+=100
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com