【題目】如圖,ABC中,AB=AC,A=36°,稱滿足此條件的三角形為黃金等腰三角形.請完成以下操作:(畫圖不要求使用圓規(guī),以下問題所指的等腰三角形個數(shù)均不包括ABC

1)在圖1中畫1條線段,使圖中有2個等腰三角形,并直接寫出這2個等腰三角形的頂角度數(shù)分別是      度和      度;

2)在圖2中畫2條線段,使圖中有4個等腰三角形;

3)繼續(xù)按以上操作發(fā)現(xiàn):在ABC中畫n條線段,則圖中有      個等腰三角形,其中有      個黃金等腰三角形.

【答案】(1)108,36;(2)作圖見解析;(3)2n,n.

【解析】試題分析:1)利用等腰三角形的性質(zhì)以及∠A的度數(shù),進(jìn)而得出這2個等腰三角形的頂角度數(shù);

2)利用(1)種思路進(jìn)而得出符合題意的圖形;

3)利用當(dāng)1條直線可得到2個等腰三角形;當(dāng)2條直線可得到4個等腰三角形;當(dāng)3條直線可得到6個等腰三角形,進(jìn)而得出規(guī)律求出答案.

試題解析:1)如圖1所示:∵AB=AC,A=36°,

∴當(dāng)AE=BE,則∠A=ABE=36°,則∠AEB=108°,

則∠EBC=36°,

∴這2個等腰三角形的頂角度數(shù)分別是108度和36度;

故答案為:10836;

2)如圖2所示:

3)如圖3所示:當(dāng)1條直線可得到2個等腰三角形;

當(dāng)2條直線可得到4個等腰三角形;

當(dāng)3條直線可得到6個等腰三角形;

∴在ABC中畫n條線段,則圖中有2n個等腰三角形,其中有n個黃金等腰三角形.

故答案為:2n,n

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在線段上,連接

1)如圖1,若求線段的長;

2)如圖1,若求證:

3)如圖2,在第(2)問的條件下,若點的延長線上時,連接的面積為的面積為的面積為.直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子長25米,斜靠在一面墻上,梯子底端離墻7米。

1)這個梯子的頂端離地面有多高?

2如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用一根長是20 cm的細(xì)繩圍成一個長方形,這個長方形的一邊長為x cm,它的面積為y cm2

(1)寫出yx之間的關(guān)系式;

(2)用表格表示當(dāng)x1變到9(每次增加1),y的相應(yīng)值;

(3)從上面的表格中,你看出什么規(guī)律?(寫出一條即可)

(4)從表格中可以發(fā)現(xiàn)怎樣圍,得到的長方形的面積最大?最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC

1)若AB=4,AC=5,則BC邊的取值范圍是  

2)點DBC延長線上一點,過點DDE∥AC,交BA的延長線于點E,若∠E=55°∠ACD=125°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉(zhuǎn)30°,得到平行四邊形AB′C′D′(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點,點D′與點D是對應(yīng)點),點B′恰好落在BC邊上,則∠C的度數(shù)等于( )

A.100°
B.105°
C.115°
D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是邊長為3的等邊三角形,點D是邊BC上的一點,且BD1,以AD為邊作等邊△ADE,過點EEFBC,交AC于點F,連接BF,則下列結(jié)論中ABD≌△BCF;四邊形BDEF是平行四邊形;S四邊形BDEF;SAEF.其中正確的有(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案