【題目】定義:
數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.
理解:
(1)如圖,已知、是上兩點,請在圓上找出滿足條件的點,使為“智慧三角形”(畫出點的位置,保留作圖痕跡);
(2)如圖,在正方形中,是的中點,是上一點,且,試判斷是否為“智慧三角形”,并說明理由;
運用:
(3)如圖,在平面直角坐標(biāo)系中,的半徑為1,點是直線上的一點,若在上存在一點,使得為“智慧三角形”,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).
【答案】(1)見解析;(2)是否為“智慧三角形”,理由見解析;(3)點的坐標(biāo),.
【解析】
(1)連結(jié)AO并且延長交圓于C1,連結(jié)BO并且延長交圓于C2,即可求解;
(2)設(shè)正方形的邊長為4a,表示出DF、CF以及EC、BE的長,然后根據(jù)勾股定理列式表示出AF2、EF2、AE2,再根據(jù)勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性質(zhì)可得△AEF為“智慧三角形”;
(3)根據(jù)“智慧三角形”的定義可得△OPQ為直角三角形,根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時,另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為3,根據(jù)勾股定理可求另一條直角邊,再根據(jù)三角形面積可求斜邊的高,即點P的橫坐標(biāo),再根據(jù)勾股定理可求點P的縱坐標(biāo),從而求解.
(1)解析】如圖所示
(2)是否為“智慧三角形”,
理由如下:設(shè)正方形的邊長為,
∵是的中點,∴,
∵,∴,,
在中,,
在中,,
在中,,
∴,
∴是直角三角形,
∵斜邊上的中線等于的一半,
∴為“智慧三角形”;
(3)如圖所示:
由“智慧三角形”的定義可得為直角三角形,
根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時,另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為3,
由勾股定理可得,,
由勾股定理可求得,
故點的坐標(biāo),.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,等邊△ABC,點 E 在 BA 的延長線上,點 D 在 BC 上,且 ED=EC.
(1)如圖 1,求證:AE=DB;
(2)如圖 2,將△BCE 繞點 C 順時針旋轉(zhuǎn) 60°至△ACF(點 B、E 的對應(yīng)點分別為點 A、F),連接 EF.在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對線段長度之差等于 AB 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點E為對角線AC上一點,EF⊥DE交AB于F,若四邊形AFED的面積為4,則四邊形AFED的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標(biāo)分別是2和4,則△OAB的面積是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形中,,,中點為,將線段繞點順時針旋轉(zhuǎn)得到線段,連結(jié),過點作邊上的高,易證,從而得到的面積為.
初步探究:如圖②,在中,,,中點為.將線段繞點順時針旋轉(zhuǎn)得到線段,連結(jié).用含的代數(shù)式表示的面積,并說明理由.
簡單應(yīng)用:如圖③,在等腰三角形中,,,中點為.將線段繞點順時針旋轉(zhuǎn)得到線段,連結(jié),直接寫出的面積.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中拋物線y=(x+1)(x﹣3)與x軸相交于A、B兩點,若在拋物線上有且只有三個不同的點C1、C2、C3,使得△ABC1、△ABC2、△ABC3的面積都等于m,則m的值是( 。
A. 6 B. 8 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CA=8,CB=6,動點P從C出發(fā)沿CA方向,以每秒1個單位長度的速度向A點勻速運動,到達(dá)A點后立即以原來速度沿AC返回;同時動點Q從點A出發(fā)沿AB以每秒1個單位長度向點B勻速運動,當(dāng)Q到達(dá)B時,P、Q兩點同時停止運動.設(shè)P、Q運動的時間為t秒(t>0).
(1)當(dāng)t為何值時,PQ∥CB?
(2)在點P從C向A運動的過程中,在CB上是否存在點E使△CEP與△PQA全等?若存在,求出CE的長;若不存在,請說明理由;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB﹣BC﹣CP于點F.當(dāng)DF經(jīng)過點C時,求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為2,E是AB的中點,以E為圓心,線段ED的長為半徑作半圓,交直線AB于點M,N,分別以線段MD,ND為直徑作半圓,則圖中陰影部分的面積為_____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com