【題目】如圖,正方形ABCD邊長為2,EAB的中點,以E為圓心,線段ED的長為半徑作半圓,交直線AB于點M,N,分別以線段MD,ND為直徑作半圓,則圖中陰影部分的面積為_____________

【答案】2

【解析】

根據(jù)圖形可知陰影部分的面積=兩個小的半圓的面積+DMN的面積﹣大半圓的面積,MN的半圓的直徑,從而可知∠MDN90°,此陰影部分的面積=△DMN的面積,在RtAED中,求出DE,所以MN2,然后利用三角形的面積公式求解即可.

解:根據(jù)圖形可知陰影部分的面積=兩個小的半圓的面積+DMN的面積﹣大半圓的面積.

MN是半圓的直徑,

∴∠MDN90°.

RtMDN中,MN2MD2+DN2,

∴兩個小半圓的面積=大半圓的面積.

∴陰影部分的面積=△DMN的面積.

RtAED中,DE,

MN2DE2

∴陰影部分的面積=△DMN的面積=MNAD×2×22

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:

數(shù)學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.

理解:

1)如圖,已知、上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

2)如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

3)如圖,在平面直角坐標系中,的半徑為1,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮一起玩摸棋子的游戲.在一個密閉不透明的盒子中裝有2枚白色棋子和2枚黑色棋子,棋子除顏色外其余均相同.從這個盒子中隨機摸出1枚棋子記下顏色,放回;搖勻后,再隨機地摸出1枚棋子,并記下顏色,若兩次摸出的棋子顏色相同,則小明勝;若兩次摸出的棋子顏色不相同,則小亮勝.這個游戲對雙方公平嗎?請用畫樹狀圖或列表格的方法說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EBC邊的中點,點P在射線AD上,過PPFAEF,設PAx

(1)求證:△PFA∽△ABE

(2)若以P,F,E為頂點的三角形也與△ABE相似,試求x的值;

(3)試求當x取何值時,以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學習函數(shù)時,我們經(jīng)歷了確定函數(shù)的表達式利用函數(shù)圖象研究其性質(zhì)——運用函數(shù)解決問題的學習過程,在畫函數(shù)圖象時,我們通過列表、描點、連線的方法畫出了所學的函數(shù)圖象

同時,我們也學習過絕對值的意義

結合上面經(jīng)歷的學習過程,現(xiàn)在來解決下面的問題:

在函數(shù)y=|kx-1|+b中,當x=0時,y=-2;當x=1時,y=-3

(1)求這個函數(shù)的表達式;

(2)在給出的平面直角坐標系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質(zhì);

(3)在圖中作出函數(shù)y=的圖象,結合你所畫的函數(shù)圖象,直接寫出不等式|kx-1|+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知雙曲線在第一象限內(nèi)交于,兩點,,則扇形的面積是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,

1)請用尺規(guī)作圖法,作∠B的平分線,交AD于點E;(不要求寫作法,保留作圖痕跡)

2 若平行四邊形ABCD的周長為10,CD2,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于函數(shù)的四個命題:

①當x=0時,y有最小值12

n為任意實數(shù),x=3+n時的函數(shù)值大于x=3-n時的函數(shù)值;

③若n3,且n是整數(shù),當時,y的整數(shù)值有個;

④若函數(shù)圖象過點,其中a0,b0,則ab

其中真命題的序號是( 。

A.B.C.D.

查看答案和解析>>

同步練習冊答案