【題目】在平面直角坐標(biāo)系xOy中,對(duì)于與坐標(biāo)軸不平行的直線l和點(diǎn)P,給出如下定義:過(guò)點(diǎn)Px軸,y軸的垂線,分別交直線l于點(diǎn)M,N,若PM+PN≤4,則稱P為直線l的近距點(diǎn),特別地,直線上l所有的點(diǎn)都是直線l的近距點(diǎn).已知點(diǎn)A(-,0),B(0,2),C(-2,2).

(1)當(dāng)直線l的表達(dá)式為y=x時(shí),

①在點(diǎn)A,BC中,直線l的近距點(diǎn)是 ;

②若以OA為邊的矩形OAEF上所有的點(diǎn)都是直線l的近距點(diǎn),求點(diǎn)E的縱坐標(biāo)n的取值范圍;

(2)當(dāng)直線l的表達(dá)式為y=kx時(shí),若點(diǎn)C是直線l的近距點(diǎn),直接寫出k的取值范圍

【答案】(1)①A,B;②n的取值范圍是,且;(2) .

【解析】(1)①根據(jù)PM+PN≤4,進(jìn)行判斷;②當(dāng)PM+PN=4時(shí),可知點(diǎn)P在直線l1,直線l2上.所以直線l的近距點(diǎn)為在這兩條平行線上和在這兩條平行線間的所有點(diǎn).分兩種情況EFOA上方,當(dāng)點(diǎn)E在直線l1上時(shí),n的值最大;EFOA下方,當(dāng)點(diǎn)F在直線l2上時(shí),n的值最小,當(dāng)時(shí),EFAO重合,矩形不存在,所以可以分析出n的取值范圍;

(2)根據(jù)定義,結(jié)合圖形可推出:

解:(1)①AB;

②當(dāng)PM+PN=4時(shí),可知點(diǎn)P在直線l1,直線l2上.所以直線l的近距點(diǎn)為在這兩條平行線上和在這兩條平行線間的所有點(diǎn).

如圖1,EFOA上方,當(dāng)點(diǎn)E在直線l1上時(shí),n的值最大,為

如圖2,EFOA下方,當(dāng)點(diǎn)F在直線l2上時(shí),n的值最小,為

當(dāng)時(shí),EFAO重合,矩形不存在.

綜上所述,n的取值范圍是,且

(2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年某月的月歷上圈出了相鄰的三個(gè)數(shù)a、b、c,并求出了它們的和為39,這三個(gè)數(shù)在月歷中的排布不可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.

(1)(概念理解)在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是___________.

(2)(性質(zhì)探究)如圖2,試探索垂美四邊形ABCD的兩組對(duì)邊AB,CD與BC ,AD之間的數(shù)量關(guān)系,寫出證明過(guò)程。

(3)(問(wèn)題解決)如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外做正方形ACFG和正方形ABDE,連接CE,BG,GE, 已知AC=,BC=1 求GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方體骰子(相對(duì)面上的點(diǎn)數(shù)分別為1和6、2和5、3和4)放置于水平桌面上,如圖1。在圖2中,將骰子向右翻滾90°,然后在桌面上按逆時(shí)針?lè)较蛐D(zhuǎn)90°,則完成一次變換。若骰子的初始位置為圖1所示的狀態(tài),那么按上述規(guī)則連續(xù)完成14次變換后,骰子朝上一面的點(diǎn)數(shù)是_____________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人5次射擊命中的環(huán)數(shù)如下:

7

9

8

6

10

7

8

9

8

8

則以下判斷中正確的是(
A. = , S2=S2
B. = , S2>S2
C. = , S2<S2
D. , S2<S2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角板ABC的兩直角邊AC,BC的長(zhǎng)分別是40cm和30cm,點(diǎn)G在斜邊AB上,且BG=30cm,將這個(gè)三角板以G為中心按逆時(shí)針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個(gè)三角板重疊部分(四邊形EFGD)的面積為cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B是數(shù)軸上的點(diǎn),且點(diǎn)A表示數(shù)-3,請(qǐng)參照?qǐng)D并思考,完成下列各題:

(1)將A點(diǎn)向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是 ,此時(shí) A,B兩點(diǎn)間的距離是 .

(2)若把數(shù)軸繞點(diǎn)A對(duì)折,則對(duì)折后,點(diǎn)B落在數(shù)軸上的位置所表示的數(shù)為 .

(3)若(1)中點(diǎn)B以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),A不動(dòng),多長(zhǎng)時(shí)間后,點(diǎn)B與點(diǎn)A距離為2個(gè)單位長(zhǎng)度?試列式計(jì)算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:(1)7(2x–1)–3(4x–1)=4(3x+2)–1;

(2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).

(1)點(diǎn)B表示的數(shù)是_________________;

(2)若點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是________;

(3)若點(diǎn)A、B分別以每秒1個(gè)單位長(zhǎng)度、3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后,A、B、O三個(gè)點(diǎn)中有一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)為端點(diǎn)的線段的中點(diǎn),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案