【題目】如圖,一輛超市購物車放置在水平地面上,其側(cè)面四邊形ABCD與地面某條水平線l在同一平面內(nèi),且ABl,若∠A=93°,∠D=111°,則直線CDl所夾銳角的度數(shù)為(

A. 15°B. 18°C. 21°D. 24°

【答案】D

【解析】

延長CDBA的延長線相較于點(diǎn)E,與直線l相較于點(diǎn)F,已知∠A=93°,求出∠DAE的度數(shù),再利用三角形的外角性質(zhì)求出∠DEA,再根據(jù)平行線的性質(zhì),求出CD與l的夾角度數(shù).

延長CDBA的延長線相較于點(diǎn)E,與直線l相較于點(diǎn)F

∵∠EDA=180°-∠CDA=180°-111°=69°,

∴∠DEA=DAB-EDA=93°69°=24°,

ABl

∴∠F=DEA=24°,即直線CDl所夾銳角的度數(shù) 24°。

故答案為:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間是( 。

A. 1小時(shí) B. 2小時(shí) C. 3小時(shí) D. 4小時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點(diǎn)為,頂點(diǎn)為.

1)求該二次函數(shù)的解析式及點(diǎn)的坐標(biāo);

2)點(diǎn)軸上的動(dòng)點(diǎn),

的最大值及對應(yīng)的點(diǎn)的坐標(biāo);

②設(shè)軸上的動(dòng)點(diǎn),若線段與函數(shù)的圖像只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校的甲、乙兩位老師同住一小區(qū),該小區(qū)與學(xué)校相距2400. 甲從小區(qū)步行去學(xué)校,出發(fā)10分鐘后乙再出發(fā),乙從小區(qū)先騎公共自行車,途經(jīng)學(xué)校義騎行若干米到達(dá)還車點(diǎn)后,立即步行走回學(xué)校. 已知甲步行的速度比乙步行的速度每分鐘快5. 設(shè)甲步行的時(shí)間為(),圖1中線段和折線分別表示甲、乙離開小區(qū)的路程()與甲步行時(shí)間()的函數(shù)關(guān)系的圖象;圖2表示甲、乙兩人之間的距離()與甲步行時(shí)間()的函數(shù)關(guān)系的圖象(不完整).根據(jù)圖1和圖2中所給信息,解答下列問題:

(1)求甲步行的速度和乙出發(fā)時(shí)甲離開小區(qū)的路程;

(2)求乙騎自行車的速度和乙到達(dá)還車點(diǎn)時(shí)甲、乙兩人之間的距離;

(3)在圖2中,畫出當(dāng)時(shí)關(guān)于的函數(shù)的大致圖象. (溫馨提示:請畫在答題卷相對應(yīng)的圖上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】箭頭四角形,模型規(guī)律:如圖1,延長COAB于點(diǎn)D,則.因?yàn)榘妓倪呅?/span>ABOC形似箭頭,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用:

1)直接應(yīng)用:

①如圖2,

②如圖32等分線(即角平分線)交于點(diǎn)F,已知,則

③如圖4,分別為2019等分線.它們的交點(diǎn)從上到下依次為.已知,則

2)拓展應(yīng)用:如圖5,在四邊形ABCD中,O是四邊形ABCD內(nèi)一點(diǎn),且.求證:四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A1,2),過點(diǎn)A分別作x軸、y軸的平行線交反比例函數(shù)y=x>0)的圖象于點(diǎn)B,C,延長OABC于點(diǎn)D.若ABD的面積為2,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級全體男生1000米跑步的成績,隨機(jī)抽取了部分男生進(jìn)行測試,并將測試成績分為、、四個(gè)等級,繪制如下不完整的統(tǒng)計(jì)圖表,如題圖表所示,根據(jù)圖表信息解答下列問題:

成績等級頻數(shù)分布表

成績等級

頻數(shù)

A

24

B

10

C

x

D

2

合計(jì)

y

成績等級扇形統(tǒng)計(jì)圖

1x=______,y=______,扇形圖中表示的圓心角的度數(shù)為______度;

2)甲、乙、丙是等級中的三名學(xué)生,學(xué)校決定從這三名學(xué)生中隨機(jī)抽取兩名介紹體育鍛煉經(jīng)驗(yàn),用列表法或畫樹狀圖法,求同時(shí)抽到甲、乙兩名學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,點(diǎn)和點(diǎn)上的兩點(diǎn),過點(diǎn)的切線交延長線于點(diǎn)。

Ⅰ.若,求的度數(shù);

Ⅱ.若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)k1b為常數(shù),k1≠0)的圖象與反比例函數(shù)的圖象交于點(diǎn)Am,8)與點(diǎn)B4,2).

①求一次函數(shù)與反比例函數(shù)的解析式.

②根據(jù)圖象說明,當(dāng)x為何值時(shí),

查看答案和解析>>

同步練習(xí)冊答案