【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MNMC的值.
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、證明過(guò)程見(jiàn)解析;(3)、8.
【解析】試題分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據(jù)圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP,故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進(jìn)而可得△MBN∽△MCB,故BM2=MNMC,代入數(shù)據(jù)可得MNMC=BM2=8.
試題解析:(1)∵OA=OC,∴∠A=∠ACO,
又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,
又∵AB是⊙O的直徑,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,
即OC⊥CP,
∵OC是⊙O的半徑,∴PC是⊙O的切線;
(2)∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC,
∴;
(3)連接MA,MB,
∵點(diǎn)M是弧AB的中點(diǎn),∴ 弧AM=弧BM,∴∠ACM=∠BCM,
∵∠ACM=∠ABM,∴∠BCM=∠ABM,
∵∠BMN=∠BMC,∴△MBN∽△MCB,∴ ,∴,
又∵AB是⊙O的直徑,弧AM=弧BM,
∴∠AMB=90°,AM=BM,
∵AB=4,∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)國(guó)家的“節(jié)能減排”政策,某廠家開(kāi)發(fā)了一種新型的電動(dòng)車(chē),如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T(mén),大燈照亮地面的寬度BC的長(zhǎng)為m.
(1)求BT的長(zhǎng)(不考慮其他因素).
(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車(chē)動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到電動(dòng)車(chē)完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車(chē),從做出剎車(chē)動(dòng)作到電動(dòng)車(chē)停止的剎車(chē)距離是,請(qǐng)判斷該車(chē)大燈的設(shè)計(jì)是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計(jì)),并說(shuō)明理由.
(參考數(shù)據(jù):sin22°≈,tan22°≈,sin31°≈,tan31°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,是的邊上的中線.
(1)①用尺規(guī)完成作圖:延長(zhǎng)到點(diǎn),使,連接;
② 若,求的取值范圍;
(2)如圖2,當(dāng)時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的邊BC上有一動(dòng)點(diǎn)E,連接AE、DE,以AE、DE為邊作AEDF.在點(diǎn)E從點(diǎn)B移動(dòng)到點(diǎn)C的過(guò)程中,AEDF的面積( )
A.先變大后變小B.先變小后變大C.一直變大D.保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-(m+2)x+2=0(m≠0)
(1)求證:方程一定有兩個(gè)實(shí)數(shù)根;
(2)若此方程的兩根為不相等的整數(shù),求整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于半圓,AB是直徑,過(guò)A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線;
(2)設(shè)D是弧AC的中點(diǎn),連結(jié)BD交AC 于G,過(guò)D作DE⊥AB于E,交AC于F.求證:FD=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的集合里:
-2.4,3,,,0.333…,-(2.28),3.14,,1.010010001…(相鄰兩個(gè)1之間0的個(gè)數(shù)增加1),.
(1)正有理數(shù)集合{ ……}
(2)整數(shù)集合{ ……}
(3)負(fù)分?jǐn)?shù)集合{ ……}
(4)無(wú)理數(shù)集合{ ……}
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,點(diǎn)是邊上異于點(diǎn)的一點(diǎn),的垂直平分線分別交、于,連.
(1)求證:;
(2)請(qǐng)求出:的度數(shù);
(3)試猜想線段之間的數(shù)量關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你能很快算出嗎?
為了解決這個(gè)問(wèn)題,我們考察個(gè)位上的數(shù)為5的正整數(shù)的平方,任意一個(gè)個(gè)位數(shù)為5的正整數(shù)可寫(xiě)成10n+5(n為正整數(shù)),即求的值,試分析,2,3……這些簡(jiǎn)單情形,從中探索其規(guī)律.
⑴通過(guò)計(jì)算,探索規(guī)律:
可寫(xiě)成;
可寫(xiě)成;
可寫(xiě)成;
可寫(xiě)成;………………
可寫(xiě)成________________________________
可寫(xiě)成________________________________
⑵根據(jù)以上規(guī)律,試計(jì)算=
=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com