【題目】在棋盤中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對稱圖形,請?jiān)趫D中畫出該圖形的對稱軸;
(2)在其他格點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對稱圖形,請直接寫出棋子P的位置的坐標(biāo).(寫出2個(gè)即可)

【答案】
(1)解:如圖2所示,C點(diǎn)的位置為(﹣1,2),A,O,B,C四顆棋子組成等腰梯形,直線l為該圖形的對稱軸


(2)解:如圖1所示:P(0,﹣1),P′(﹣1,﹣1)都符合題意


【解析】(1)根據(jù)A,B,O,C的位置,結(jié)合軸對稱圖形的性質(zhì)進(jìn)而畫出對稱軸即可;(2)利用軸對稱圖形的性質(zhì)得出P點(diǎn)位置.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在開展經(jīng)典閱讀活動(dòng)中,某學(xué)校為了解全校學(xué)生利用課外時(shí)間閱讀的情況,學(xué)校團(tuán)委隨機(jī)抽取若干名學(xué)生,調(diào)查他們一周的課外閱讀時(shí)間,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)表.根據(jù)圖表信息,解答下列問題:

    頻率分布表

閱讀時(shí)間(小時(shí))

頻數(shù)(人)

頻率

1≤x<2

18

0.12

2≤x<3

a

m

3≤x<4

45

0.3

4≤x<5

36

n

5≤x<6

21

0.14

合計(jì)

b

1

(1)填空:a ,b ,m ,n

(2)將頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的頻數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),已知:在ABC中,∠BAC90°,ABAC,直線m經(jīng)過點(diǎn)A,BD⊥直線mCE⊥直線m,垂足分別為點(diǎn)D、E.證明:DEBD+CE

2)如圖(2),將(1)中的條件改為:在ABC中,ABACD、AE三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結(jié)論DEBD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)拓展與應(yīng)用:如圖(3),DED、AE三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且ABFACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷DEF的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察圖形

如圖1,△ABCAB=AC,∠BAC=45°,CDAB,AEBC,垂足分別為DE,CDAE交于點(diǎn)F

寫出圖1中所有的全等三角形_________________;

線段AF與線段CE的數(shù)量關(guān)系是_________________;

(2)問題探究

如圖2,△ABC,∠BAC=45°,AB=BC,AD平分BAC,ADCD,垂足為DADBC交于點(diǎn)E

求證AE=2CD

(3)拓展延伸

如圖3,△ABC,∠BAC=45°,AB=BC,點(diǎn)DAC,∠EDC=BAC,DECE,垂足為EDEBC交于點(diǎn)F

求證DF=2CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:
(1)x2﹣4x+4=0
(2)x(x﹣2)=3(x﹣2)
(3)(2y﹣1)2﹣4=0
(4)(2x+1)(x﹣3)=0
(5)x2+5x+3=0
(6)x2﹣6x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邵陽市到長沙的高鐵列車?yán)锍瘫绕湛炝熊嚴(yán)锍炭s短了75千米,運(yùn)行時(shí)間減少了4小時(shí),已知邵陽市到長沙的普快列車?yán)锍虨?/span>306千米,高鐵列車平均時(shí)速是普快列車平均時(shí)速的3.5倍.

(1)求高鐵列車的平均時(shí)速;

(2)某日劉老師從邵陽火車南站到長沙市新大新賓館參加上午11:00召開的會(huì)議,如果他買到當(dāng)日上午9:20從邵陽市火車站到長沙火車南站的高鐵票,而且從長沙火車南站到新大新賓館最多需要20分鐘.試問在高鐵列車準(zhǔn)點(diǎn)到達(dá)的情況下他能在開會(huì)之前趕到嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角△ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑

(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求 的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)內(nèi)角分別是它們對角的一半的四邊形叫做半對角四邊形.
(1)如圖1,在半對角四邊形ABCD中,∠B= ∠D,∠C= ∠A,求∠B與∠C的度數(shù)之和;

(2)如圖2,銳角△ABC內(nèi)接于⊙O,若邊AB上存在一點(diǎn)D,使得BD=BO.∠OBA的平分線交OA于點(diǎn)E,連結(jié)DE并延長交AC于點(diǎn)F,∠AFE=2∠EAF.

求證:四邊形DBCF是半對角四邊形;
(3)如圖3,在(2)的條件下,過點(diǎn)D作DG⊥OB于點(diǎn)H,交BC于點(diǎn)G.當(dāng)DH=BG時(shí),求△BGH與△ABC的面積之比.

查看答案和解析>>

同步練習(xí)冊答案