【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長(zhǎng)交OC于E.

(1)求點(diǎn)B的坐標(biāo);

(2)求證:四邊形ABCE是平行四邊形;

(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長(zhǎng).

【答案】(1)B的坐標(biāo)為(,4);(2)證明見(jiàn)解析;(3)1

【解析】

試題分析:(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)三角函數(shù)的知識(shí),即可求得AB與OA的長(zhǎng),即可求得點(diǎn)B的坐標(biāo);

(2)首先可得CE∥AB,D是OB的中點(diǎn),根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;

(3)首先設(shè)OG的長(zhǎng)為x,由折疊的性質(zhì)可得:AG=CG=8﹣x,然后根據(jù)勾股定理即可求得OG的長(zhǎng).

試題解析:(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OBcos30°==,AB=OBsin30°=8×=4,∴點(diǎn)B的坐標(biāo)為(,4);

(2)證明:∵∠OAB=90°,∴AB⊥x軸,∵y軸⊥x軸,∴AB∥y軸,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4,∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等邊三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四邊形ABCE是平行四邊形;

(3)解:設(shè)OG的長(zhǎng)為x,∵OC=OB=8,∴CG=8﹣x,由折疊的性質(zhì)可得:AG=CG=8﹣x,在Rt△AOG中,,即,解得:x=1,即OG=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各數(shù)中互為相反數(shù)的是( )
A. 和-
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直線交x軸于點(diǎn)A,交y軸于點(diǎn)C(0,4),拋物線經(jīng)過(guò)點(diǎn)A,交y軸于點(diǎn)B(0,﹣2).點(diǎn)P為拋物線上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線PD,過(guò)點(diǎn)B作BD⊥PD于點(diǎn)D,連接PB,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)當(dāng)△BDP為等腰直角三角形時(shí),求線段PD的長(zhǎng);

(3)如圖2,將△BDP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到△BD′P′,且旋轉(zhuǎn)角∠PBP′=∠OAC,當(dāng)點(diǎn)P的對(duì)應(yīng)點(diǎn)P′落在坐標(biāo)軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】調(diào)查市場(chǎng)上某種食品的色素含量是否符合國(guó)家標(biāo)準(zhǔn),這種調(diào)查適用   .(填全面調(diào)查或者抽樣調(diào)查)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若等腰三角形的兩條邊的長(zhǎng)分別為5cm和8cm,則它的周長(zhǎng)是(
A.13cm
B.18cm
C.21cm
D.18cm或21cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線a∥b,△ABC是等邊三角形,點(diǎn)A在直線a上,邊BC在直線b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如圖①);繼續(xù)以上的平移得到圖②,再繼續(xù)以上的平移得到圖③,…;請(qǐng)問(wèn)在第100個(gè)圖形中等邊三角形的個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,直線交于x軸于點(diǎn)A,交y軸于點(diǎn)C,過(guò)A、C兩點(diǎn)的拋物線F1交x軸于另一點(diǎn)B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;

(2)若點(diǎn)M是拋物線F1位于第二象限圖象上的一點(diǎn),設(shè)四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時(shí)點(diǎn)M的坐標(biāo)及S的最大值;

(3)如圖②,將拋物線F1沿y軸翻折并“復(fù)制”得到拋物線F2,點(diǎn)A、B與(2)中所求的點(diǎn)M的對(duì)應(yīng)點(diǎn)分別為A′、B′、M′,過(guò)點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,),B(,),C(﹣m,)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對(duì)稱軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線a,過(guò)拋物線頂點(diǎn)P作PH⊥a于H.

(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);

(2)若無(wú)論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;

(3)當(dāng)1<PH≤6時(shí),試比較,之間的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.

(1)求證:△DCE≌△BFE;

(2)若CD=2,∠ADB=30°,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案