【題目】設(shè)拋物線F的解析式為:y=2x2﹣4nx+2n2+n,n為實(shí)數(shù).
(1)求拋物線F頂點(diǎn)的坐標(biāo)(用n表示),并證明:當(dāng)n變化時(shí)頂點(diǎn)在一條定直線l上;
(2)如圖,射線m是(1)中直線l與x軸正半軸夾角的平分線,點(diǎn)M,N都在射線m上,作MA⊥x軸、NB⊥x軸,垂足分別為點(diǎn)A、點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),當(dāng)MA+NB=MN時(shí),試判斷是否為定值,若是,請(qǐng)求出定值;若不是,說(shuō)明理由.
(3)已知直線y=kx+b與拋物線F中任意一條都相截,且截得的長(zhǎng)度都為,求這條直線的解析式.
【答案】(1)詳見(jiàn)解析;(2)2;(3)y=x+2.
【解析】
(1)將拋物線配方成頂點(diǎn)式可得頂點(diǎn)坐標(biāo)及其所在直線解析式;
(2)由直線l的斜率及角平分線得出∠NOB=30°、MA=OM、NB=ON,根據(jù)MA+NB=OM+ON=OM+(OM+MN)=MN知OM=MN,由可得答案;
(3)聯(lián)立得2x2-(4n+k)x+2n2+n-b=0,設(shè)交點(diǎn)坐標(biāo)為P(x1、y1)、Q(x2,y2),由韋達(dá)定理知x1+x2=、x1x2=,從而由為定值得k=,進(jìn)一步求解可得.
(1)∵y=2x2﹣4nx+2n2+n=2(x﹣n)2+n,
∴拋物線的頂點(diǎn)坐標(biāo)為F(n, n),
由圖可設(shè)直線l的解析式為y=kx,
將點(diǎn)F(n, n)代入,得: n=kn,
解得:k=,
則當(dāng)n變化時(shí),頂點(diǎn)在直線y=x上;
(2)∵由直線l的斜率為知直線l與x軸正半軸的夾角為60°,
∴∠NOB=30°,MA=OM、NB=ON,
MA+NB=OM+ON=OM+(OM+MN)=MN,
∴OM=MN,
則=2;
(3)聯(lián)立,得:2x2﹣(4n+k)x+2n2+n﹣b=0,
設(shè)交點(diǎn)坐標(biāo)為P(x1、y1)、Q(x2,y2),
由韋達(dá)定理知x1+x2=、x1x2=,
∴PQ=
=
=
=為定值,
則一定有k=,
代入得3+8b=19,
解得b=2,
故直線的解析式為y=x+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知長(zhǎng)方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),A、C分別在x、y軸的正半軸上,頂點(diǎn)B(8,6),直線y=-x+b經(jīng)過(guò)點(diǎn)A交BC于D、交y軸于點(diǎn)M,點(diǎn)P是AD的中點(diǎn),直線OP交AB于點(diǎn)E
(1)求點(diǎn)D的坐標(biāo)及直線OP的解析式;
(2)求△ODP的面積,并在直線AD上找一點(diǎn)N,使△AEN的面積等于△ODP的面積,請(qǐng)求出點(diǎn)N的坐標(biāo)
(3)在x軸上有一點(diǎn)T(t,0)(5<t<8),過(guò)點(diǎn)T作x軸的垂線,分別交直線OE、AD于點(diǎn)F、G,在線段AE上是否存在一點(diǎn)Q,使得△FGQ為等腰直角三角形,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及相應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線y= (x>0)經(jīng)過(guò)A、B兩點(diǎn),若點(diǎn)A的橫坐標(biāo)為1,∠OAB=90°,且OA=AB,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在奉賢創(chuàng)建文明城區(qū)的活動(dòng)中,有兩段長(zhǎng)度相等的彩色道磚鋪設(shè)任務(wù),分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工.如圖是反映所鋪設(shè)彩色道磚的長(zhǎng)度y(米)與施工時(shí)間x(時(shí))之間關(guān)系的部分圖象.請(qǐng)解答下列問(wèn)題:
(1)求乙隊(duì)在2≤x≤6的時(shí)段內(nèi),y與x之間的函數(shù)關(guān)系式;
(2)如果甲隊(duì)施工速度不變,乙隊(duì)在開挖6小時(shí)后,施工速度增加到12米/時(shí),結(jié)果兩隊(duì)同時(shí)完成了任務(wù).求甲隊(duì)從開始施工到完工所鋪設(shè)的彩色道磚的長(zhǎng)度為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本校九年級(jí)學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級(jí)隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績(jī)?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問(wèn)題:
(1)這次隨機(jī)抽取的學(xué)生共有多少人?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這個(gè)學(xué)校九年級(jí)共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請(qǐng)估計(jì)這次九年級(jí)學(xué)生期末數(shù)學(xué)考試成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.
(1)求證:△ABC≌△ADC.
(2)若∠BCD=60°,AC=BC,求∠ADB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的拋物線是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列結(jié)論:①b+2a=0;②拋物線與x軸的另一個(gè)交點(diǎn)為(4,0);③a+c>b;④若(﹣1,y1),(,y2)是拋物線上的兩點(diǎn),則y1<y2.其中正確的結(jié)論有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)A、E兩點(diǎn),且點(diǎn)E的坐標(biāo)為(﹣,0),以0C為直徑作半圓,圓心為D.
(1)求二次函數(shù)的解析式;
(2)求證:直線BE是⊙D的切線;
(3)若直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,M是線段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過(guò)點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長(zhǎng)為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com