分析 延長(zhǎng)BA,過(guò)點(diǎn)C作CE⊥BA與點(diǎn)E,延長(zhǎng)DC,過(guò)點(diǎn)A做AF⊥DC與點(diǎn)F,在Rt△AEC中可得到$\frac{AC}{BC}$=$\frac{sin∠B}{sin∠BAC}$;在Rt△ACF中可得到$\frac{AC}{AD}$=$\frac{sin∠D}{sin∠ACD}$,再由∠ACD=∠BCD-∠ACB,結(jié)合已知角的度數(shù),即可用∠D將∠ACD表示出來(lái),在$\frac{AC}{AD}$=$\frac{sin∠D}{sin∠ACD}$中結(jié)合sin2∠D+cos2∠D=1,即可求出sin∠D=$\frac{5\sqrt{3}}{14}$=sin∠B,將其代入$\frac{AC}{BC}$=$\frac{sin∠B}{sin∠BAC}$中即可求出線(xiàn)段BC的長(zhǎng).
解答 解:延長(zhǎng)BA,過(guò)點(diǎn)C作CE⊥BA與點(diǎn)E,延長(zhǎng)DC,過(guò)點(diǎn)A做AF⊥DC與點(diǎn)F,如圖所示.
∵在Rt△AEC中,CE=AC•sin∠CAE=AC•sin∠BAC,CE=BC•sin∠B,
∴$\frac{AC}{BC}$=$\frac{sin∠B}{sin∠BAC}$.
∵在Rt△ACF中,AF=AC•sin∠ACF=AC•sin∠ACD,AF=AD•sin∠D,
∴$\frac{AC}{AD}$=$\frac{sin∠D}{sin∠ACD}$.
在△ABC中,∠ACB=180°-∠B-∠BAC,
∵∠BAC=120°,
∴∠ACB=60°-∠B.
∵∠BCD=150°,∠B=∠D,
∴∠ACD=∠BCD-∠ACB=150°-(60°-∠B)=90°+∠B=90°+∠D.
∴$\frac{AC}{AD}$=$\frac{sin∠D}{sin∠ACD}$=$\frac{sin∠D}{sin(90°+∠D)}$=$\frac{sin∠D}{cos∠D}$,
∵AC=5$\sqrt{3}$,AD=11,
∴sin∠D=$\frac{5\sqrt{3}}{11}$cos∠D,
又∵sin2∠D+cos2∠D=1,
∴sin∠D=$\frac{5\sqrt{3}}{14}$=sin∠B.
又∵$\frac{AC}{BC}$=$\frac{sin∠B}{sin∠BAC}$,且∠BAC=120°,AC=5$\sqrt{3}$,
∴BC=$\frac{AC•sin∠BAC}{sin∠B}$=$\frac{5\sqrt{3}×\frac{\sqrt{3}}{2}}{\frac{5\sqrt{3}}{14}}$=7$\sqrt{3}$.
故答案為:7$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了解直角三角形,解題的關(guān)鍵是:借助直角三角形這個(gè)工具得出$\frac{AC}{BC}$=$\frac{sin∠B}{sin∠BAC}$以及$\frac{AC}{AD}$=$\frac{sin∠D}{sin∠ACD}$.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com