【題目】如圖,菱形ABCD的邊長為2,∠ABC=60°,點E、F在對角線BD上運動,且EF=2,連接AE、AF,則△AEF周長的最小值是( )
A.4B.4+C.2+2D.6
【答案】D
【解析】
作AH∥BD,使得AH=EF=2,連接CH交BD于F,則AE+AF的值最小,進而得出△AEF周長的最小值即可.
解:如圖作AH∥BD,使得AH=EF=2,連接CH交BD于F,則AE+AF的值最小,即△AEF的周長最小.
∵AH=EF,AH∥EF,
∴四邊形EFHA是平行四邊形,
∴EA=FH,
∵FA=FC,
∴AE+AF=FH+CF=CH,
∵菱形ABCD的邊長為2,∠ABC=60°,
∴AC=AB=2,
∵四邊形ABCD是菱形,
∴AC⊥BD,
∵AH∥DB,
∴AC⊥AH,
∴∠CAH=90°,
在Rt△CAH中,CH=
∴AE+AF的最小值4,
∴△AEF的周長的最小值=4+2=6,
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)疫情期間為了切實抓好“停課不停學(xué)”活動,借助某軟件平臺隨機抽取了該校部分學(xué)生的在線學(xué)習(xí)時間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)以上信息回答下列問題
(1)本次調(diào)查的人數(shù)為 , 學(xué)習(xí)時間為7小時的所對的圓心角為 ;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1800人,估計有多少學(xué)生在線學(xué)習(xí)時間不低于8個小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位要印刷“市民文明出行,遵守交通安全”的宣傳材料.甲印刷廠提出:每份材料收2元印刷費,另收1000元的制版費;乙印刷廠提出:每份材料收3元印刷費,不收制版費.
(1)分別寫出兩個印刷廠的收費,(元)與印制數(shù)量(份)之間的關(guān)系式(不用寫出自變量的取值范圍);
(2)在同一坐標系內(nèi)畫出它們的圖象,并求出當印制多少份宣傳材料,兩個印刷廠的印制費用相同?此時費用為多少?
(3)結(jié)合圖象回答:在印刷品數(shù)量相同的情況下選哪家印刷廠印制省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲種原料69千克,乙種原料52千克,現(xiàn)計劃用這兩種原料生產(chǎn)A,B兩種型號的產(chǎn)品共80件,已知每件A型號產(chǎn)品需要甲種原料0.6千克,乙種原料0.9千克;每件B型號產(chǎn)品需要甲種原料1.1千克,乙種原料0.4千克.請解答下列問題:
(1)該工廠有哪幾種生產(chǎn)方案?
(2)在這批產(chǎn)品全部售出的條件下,若1件A型號產(chǎn)品獲利35元,1件B型號產(chǎn)品獲利25元,(1)中哪種方案獲利最大?最大利潤是多少?
(3)在(2)的條件下,工廠決定將所有利潤的25%全部用于再次購進甲、乙兩種原料,要求每種原料至少購進4千克,且購進每種原料的數(shù)量均為整數(shù).若甲種原料每千克40元,乙種原料每千克60元,請直接寫出購買甲、乙兩種原料之和最多的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,線段的垂直平分線交于點,點在上,且,連接
如圖1 ,求證:
如圖2,當時.在不添加任何輔助線情況下,請直接寫出圖2中的四個等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】壽春路橋(如圖①)橫跨合肥市母親河﹣南淝河,它位于合肥市東西交通主干道壽春路上,建成于1987年年底,為中承式鋼筋砼(tong)拱橋,橋的上部結(jié)構(gòu)為2個鋼筋混凝土半月形拱肋,如圖②是橋拱肋的簡化示意圖,其中拱寬(弦AB)約100米.
(1)在圖②中,請你用尺規(guī)作圖的方法首先找出弧AB所在圓的圓心O,然后確定弧AB、弦AB的中點C、D.(不要寫作法,但保留作圖痕跡)
(2)在圖②中,若∠AOB=80°,求該拱橋高CD約為多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.6,tan50°≈1.19)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=3,AC和BD交于點O,點E是邊BC上的動點(不與點B,C重合),連接EO并延長交AD于點F,連接AE,若△AEF是等腰三角形,則DF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點為對角線的中點,點是上一點,連接并延長交于點,連接、.
(1)求證:;
(2)當時,試判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com