【題目】已知:,,線段的垂直平分線交于點(diǎn),點(diǎn)上,且,連接

如圖1 ,求證:

如圖2,當(dāng)時.在不添加任何輔助線情況下,請直接寫出圖2中的四個等腰三角形

【答案】見解析;,,,

【解析】

,根據(jù)AB的垂直平分線交BC于點(diǎn)D,求出 根據(jù)AB=BE求出,即可得到AD=AE;

(2)根據(jù) AB的垂直平分線交BCD,得到是等腰三角形;根據(jù)AB=BE,得到△ABE是等腰三角形;由(1)知,推出△ADE是等腰三角形;求出, ,得到AD=CD,推出△ACD是等腰三角形.

證明:令,

線段的垂直平分線交于點(diǎn),

,

,

,

,

,

;

如圖2,

AB的垂直平分線交BCD,

AD=BD,

是等腰三角形;

AB=BE,

∴△ABE是等腰三角形;

由(1)知,

∴△ADE是等腰三角形;

, ,

,

, ,

∴∠DAC=C,

AD=CD,

∴△ACD是等腰三角形;

∴圖中的等腰三角形是:,,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,直線交坐標(biāo)軸于A、C兩點(diǎn),拋物線A、C兩點(diǎn).

1)求拋物線的解析式;

2)若點(diǎn)P為拋物線位于第三象限上一動點(diǎn),連接PA,PC,試問△PAC是否存在最大值,若存在,請求出△APC取最大值以及點(diǎn)P的坐標(biāo),若不存在,請說明理由;

3)點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N為拋物線對稱軸上一點(diǎn),若△NMC是以∠NMC為直角的等腰直角三角形,請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里裝有兩個紅球,兩個白球和一個藍(lán)球,這些球除顏色外都相同.從中隨機(jī)摸出一個球,記下顏色后放回,再從中隨機(jī)摸出一個球,兩次摸到的球的顏色能配成紫色(紅色和藍(lán)色能配成紫色)的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC邊長是定值,點(diǎn)O是它的外心,過點(diǎn)O任意作一條直線分別交AB,BC于點(diǎn)D,E.將BDE沿直線DE折疊,得到B′DE,若B′D,B′E分別交AC于點(diǎn)F,G,連接OF,OG,則下列判斷錯誤的是( 。

A. ADF≌△CGE

B. B′FG的周長是一個定值

C. 四邊形FOEC的面積是一個定值

D. 四邊形OGB'F的面積是一個定值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長線于點(diǎn)M.請判斷的值及∠AMB的度數(shù),并說明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠ABC60°,點(diǎn)E、F在對角線BD上運(yùn)動,且EF2,連接AE、AF,則AEF周長的最小值是(

A.4B.4+C.2+2D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視舉辦的《中國詩詞大會》受到廣大學(xué)生群體廣泛關(guān)注.某校的詩歌朗誦社團(tuán)就《中國詩詞大會》節(jié)目的喜愛程度,在校內(nèi)對部分學(xué)生進(jìn)行了問卷調(diào)查,并對問卷調(diào)查的結(jié)果分為非常喜歡、比較喜歡、感覺一般、不太喜歡四個等級,分別記作A、B、C、D.根據(jù)調(diào)查結(jié)果繪制出如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,請結(jié)合圖中說給信息解答下列問題:

1)本次被調(diào)查對象共有   人,扇形統(tǒng)計圖中被調(diào)查者非常喜歡等級所對應(yīng)圓心角的度數(shù)為   ;

2)將條形統(tǒng)計圖補(bǔ)充完整,并標(biāo)明數(shù)據(jù);

3)若選不太喜歡的人中有兩名女生,其余是男生,從原不太喜歡的人中挑選兩名學(xué)生了解不太喜歡的原因,請用畫樹狀圖或列表法求所選取的這兩名學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】攀枝花得天獨(dú)厚,氣候宜人,農(nóng)產(chǎn)品資源極為豐富,其中晚熟芒果遠(yuǎn)銷北上廣等大城市.某水果店購進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價為10/千克,售價不低于15/千克,且不超過40/每千克,根據(jù)銷售情況,發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量(千克)與該天的售價(元/千克)之間的數(shù)量滿足如下表所示的一次函數(shù)關(guān)系.

銷售量(千克)

32.5

35

35.5

38

售價(元/千克)

27.5

25

24.5

22

1)某天這種芒果售價為28/千克.求當(dāng)天該芒果的銷售量

2)設(shè)某天銷售這種芒果獲利元,寫出與售價之間的函數(shù)關(guān)系式.如果水果店該天獲利400元,那么這天芒果的售價為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)豬場對豬舍進(jìn)行噴藥消毒.在消毒的過程中,先經(jīng)過的藥物集中噴灑,再封閉豬舍,然后再打開窗戶進(jìn)行通風(fēng).已知室內(nèi)每立方米空氣中含藥量)與藥物在空氣中的持續(xù)時間)之間的函數(shù)圖象如圖所示,其中在打開窗戶通風(fēng)前分別滿足兩個一次函數(shù),在通風(fēng)后滿足反比例函數(shù).

1)求反比例函數(shù)的關(guān)系式;

2)當(dāng)豬舍內(nèi)空氣中含藥量不低于且持續(xù)時間不少于,才能有效殺死病毒,問此次消毒是否有效?

查看答案和解析>>

同步練習(xí)冊答案