【題目】在一個(gè)不透明的口袋中放入個(gè)大小形狀幾乎完全相同實(shí)驗(yàn)用的雞蛋,雞蛋的質(zhì)量有微小的差距(用手感覺不到差異),質(zhì)量分別為、、克,已知隨機(jī)的摸出一個(gè)雞蛋,摸到克和克的雞蛋的概率是相等的.

1)求這四個(gè)雞蛋質(zhì)量的眾數(shù)和中位數(shù)

2)小明做實(shí)驗(yàn)需要拿走一個(gè)雞蛋,芳芳在小明拿走后從剩下的三個(gè)雞蛋中隨機(jī)的拿走一個(gè)

①通過計(jì)算分析小明拿走一個(gè)雞蛋后,剩下的三個(gè)雞蛋質(zhì)量的中位數(shù)是多少?

②假設(shè)小明拿走的雞蛋質(zhì)量為克,芳芳隨機(jī)的拿出一個(gè)雞蛋后又放回,之后再隨機(jī)的拿出一個(gè)雞蛋,請(qǐng)用樹狀圖求芳芳兩次拿到都是克的雞蛋的概率?

【答案】1)因此雞蛋質(zhì)量的眾數(shù)為,中位數(shù)也是.(2)①;②

【解析】

1)因?yàn)?/span>個(gè)雞蛋有三個(gè)質(zhì)量數(shù),所以必然有兩個(gè)雞蛋的質(zhì)量是相等的,又根據(jù)摸到克的雞蛋和克的雞蛋概率相等,從而可得答案,

2)①若小明分別拿走的是不同的雞蛋,分析剩下的雞蛋,可得到答案,

②利用樹狀圖得到兩次拿走50克雞蛋的機(jī)會(huì),從而可得答案.

解(1)因?yàn)?/span>個(gè)雞蛋有三個(gè)質(zhì)量數(shù),所以必然有兩個(gè)雞蛋的質(zhì)量是相等的,所以四個(gè)雞蛋的質(zhì)量可能為、、、、;、、.又根據(jù)摸到克的雞蛋和克的雞蛋概率相等,

我們從前面數(shù)據(jù)分析可知,摸到雞蛋的的概率分別是,

所以我們知道四個(gè)雞蛋的質(zhì)量數(shù)為、、;

因此雞蛋質(zhì)量的眾數(shù)為,中位數(shù)也是

2)①若小明拿走的是49,剩下的是,,,此時(shí)中位數(shù)是50

若小明拿走的是50,剩下的是49、,,此時(shí)中位數(shù)是50

若小明拿走的是51,剩下的是49,,,此時(shí)中位數(shù)是50,

所以小明拿走一個(gè)雞蛋,不管小明拿走的雞蛋質(zhì)量是多少,剩下雞蛋的中位數(shù)都是;

②畫樹狀圖如下:

共有種情況:,;,,,;;,;;,,.其中兩次拿到克的情況有四種,所以兩次都拿到克雞蛋的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD5,連接AC,OAC的中點(diǎn),MAD上一點(diǎn),且MD1,PBC上一動(dòng)點(diǎn),則PMPO的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸交于點(diǎn)A(0-4),與x軸交于點(diǎn)B(-2,0),C(8,0),連接ABAC

1)求出二次函數(shù)表達(dá)式;

2)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)NNMAB,交AC于點(diǎn)M,連接AN,當(dāng)以點(diǎn)AM,N為頂點(diǎn)的三角形與以點(diǎn)A,B,O為頂點(diǎn)的三角形相似時(shí),求此時(shí)點(diǎn)N的坐標(biāo);

3)若點(diǎn)Nx軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A,N,C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線yax2+bx+cy軸交于點(diǎn)A06),與x軸交于點(diǎn)B(﹣2,0),C6,0).

1)直接寫出拋物線的解析式及其對(duì)稱軸;

2)如圖2,連接ABAC,設(shè)點(diǎn)Pm,n)是拋物線上位于第一象限內(nèi)的一動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),過點(diǎn)PPDAC于點(diǎn)E,交x軸于點(diǎn)D,過點(diǎn)PPGABAC于點(diǎn)F,交x軸于點(diǎn)G.設(shè)線段DG的長為d,求dm的函數(shù)關(guān)系式,并注明m的取值范圍;

3)在(2)的條件下,若PDG的面積為,

①求點(diǎn)P的坐標(biāo);

②設(shè)M為直線AP上一動(dòng)點(diǎn),連接OM交直線AC于點(diǎn)S,則點(diǎn)M在運(yùn)動(dòng)過程中,在拋物線上是否存在點(diǎn)R,使得ARS為等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M及其對(duì)應(yīng)的點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠ABC135°,ABaBCb,點(diǎn)P是邊AC上任意一點(diǎn),連結(jié)BP,將△CPB沿PB翻折,得△C'PB

1)若a,b6,∠C'PC90°,求CP的長;

2)連結(jié)AC',當(dāng)以A、B、PC'為頂點(diǎn)的四邊形是平行四邊形時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E在矩形ABCD的邊AD上,AD6,tanACD,連接CE,線段CE繞點(diǎn)C旋轉(zhuǎn)90°,得到線段CF,以線段EF為直徑做O

1)請(qǐng)說明點(diǎn)C一定在O上的理由;

2)點(diǎn)MO上,如圖2,MCO的直徑,求證:點(diǎn)MAD的距離等于線段DE的長;

3)當(dāng)△AEM面積取得最大值時(shí),求O半徑的長;

4)當(dāng)O與矩形ABCD的邊相切時(shí),計(jì)算扇形OCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,與弦所圍成圖形的外部的一定點(diǎn),是弦上的一動(dòng)點(diǎn),連接于點(diǎn).已知,設(shè),兩點(diǎn)間的距離為,,兩點(diǎn)間的距離為,,兩點(diǎn)間的距離為

小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫圖、測量分別得到了的幾組對(duì)應(yīng)值:

0

1

2

3

4

5

5.40

6

4.63

3.89

2.61

2.15

1.79

1.63

0.95

1.20

1.11

1.04

0.99

1.02

1.21

1.40

2.21

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),,并畫出函數(shù),的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)的中點(diǎn)時(shí),的長度約為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),直線經(jīng)過點(diǎn),并與交于點(diǎn),過點(diǎn),交于點(diǎn)

1)求的函數(shù)表達(dá)式;

2)當(dāng)時(shí),

①求點(diǎn)的坐標(biāo);

②求

3)將點(diǎn)的橫坐標(biāo)記為,在點(diǎn)移動(dòng)的過程中,直接寫出的范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201245日下午,重慶一中初2013級(jí)智力快車比賽的決賽在渝北校區(qū)正式進(jìn)行.智力快車活動(dòng)是我校綜合實(shí)踐課程的傳統(tǒng)版塊,已有多年歷史,比賽試題的內(nèi)容涉及到文史藝哲科技等多個(gè)方面.隨著時(shí)代的變化,其活動(dòng)項(xiàng)目也在不斷更新.今年的比賽除了繼承傳統(tǒng)的快速判斷、猜猜看、英語平臺(tái)風(fēng)險(xiǎn)提速四個(gè)環(huán)節(jié)外,特新增了動(dòng)手動(dòng)腦一項(xiàng).比賽結(jié)束后,一綜合實(shí)踐小組成員就新增環(huán)節(jié)的滿意程度,對(duì)現(xiàn)場的觀眾進(jìn)行了抽樣調(diào)查,給予評(píng)分,其中:非常滿意——5分,滿意——4分,一般——3分,有待改進(jìn)——2分,并將調(diào)查結(jié)果制作成了如下的兩幅不完整的統(tǒng)計(jì)圖:

1)本次共調(diào)查了 名同學(xué),本次調(diào)查同學(xué)評(píng)分的平均得分為 分;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)如果評(píng)價(jià)為一般的只有一名是男生,評(píng)價(jià)為有待改進(jìn)的只有一名是女生,

針對(duì)動(dòng)手動(dòng)腦環(huán)節(jié)的情況,綜合實(shí)踐小組的成員分別從評(píng)價(jià)為一般和評(píng)價(jià)

有待改進(jìn)的兩組中,分別隨機(jī)選出一名同學(xué)談?wù)勔庖姾徒ㄗh,請(qǐng)你用列表或畫樹狀圖的方法求出所選兩名同學(xué)剛好都是女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案