【題目】如圖,在△ABC,AD平分∠BACBC于點D,點FBA的延長線上,點E在線段CD上,EFAC相交于點G,AD∥EF.

(1)求證:∠BDA+CEG=180°

(2)若點HFE的延長線上,且∠F=H,則∠EDH與∠C相等嗎,請說明理由.

【答案】(1)證明見解析;(2)相等,理由見解析.

【解析】

(1)根據(jù)平行線的性質(zhì)和鄰補角的定義結(jié)合已知條件分析解答即可;

(2)由AD平分∠BAC結(jié)合AD∥EF證得∠F=∠EGC,這樣結(jié)合∠F=∠H即可得到∠H=∠EGC,由此證得AC∥DH即可得到∠EDG=∠C.

(1)ADEF

∴∠BDA=∠BEF,

又∵∠BEF+CEG=180°,

∴∠BDA+CEG=180°;

(2)∠EDH=∠C,理由如下:

∵AD平分∠BACBC于點D,

∴∠BAD=CAD,

ADEF,

∴∠BAD=FDAC=EGC,

∴∠F=∠EGC,

又∵∠H=F,

∴∠H=∠EGC.

HDAC,

∴∠EDH=C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動.在一個不透明的箱子里放有4個完全相同的小球,球上分別標有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),消費每滿300元,就可以從箱子里先后摸出兩個球(每次只摸出一個球,第一次摸出后不放回).商場根據(jù)兩個小球所標金額之和返還相應價格的購物券,可以重新在本商場消費.某顧客消費剛好滿300元,則在本次消費中:
(1)該顧客至少可得元購物券,至多可得元購物券;
(2)請用畫樹狀圖或列表法,求出該顧客所獲購物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:一粒米微不足道,平時在飯桌上總會毫不經(jīng)意地掉下幾粒,甚至有些挑食的同學把整碗米飯倒掉.針對這種浪費糧食現(xiàn)象,老師組織同學們進行了實際測算,稱得粒大米約重克.

嘗試解決:

粒米重約多少克?

按我國現(xiàn)有人口億,每年天,每人每天三餐計算,若每人每餐節(jié)約粒大米,一年大約能節(jié)約大米多少千克?(結(jié)果用科學記數(shù)法表示)

假設(shè)我們把一年節(jié)約的大米賣成錢,按每千克元計算,可賣得人民幣多少元?(結(jié)果用科學記數(shù)法表示,保留到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y= 的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為( )

A.1
B.﹣5
C.4
D.1或﹣5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在的正半軸上,點B的坐標為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點D、E,并且滿足OD= BE.點M是線段DE上的一個動點.

(1)求b的值;

(2)連結(jié)OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點M的坐標;

(3)設(shè)點N是軸上方平面內(nèi)的一點,以O(shè)、D、M、N為頂點的四邊形是菱形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:有理數(shù)xA用數(shù)軸上點A表示,xA叫做點A在數(shù)軸上的坐標;有理數(shù)xB用數(shù)軸上點B表示,xB叫做點B在數(shù)軸上的坐標.|AB|表示數(shù)軸上的兩點A,B之間的距離.

(1)借助數(shù)軸,完成下表:

xA

xB

xA﹣xB

|AB|

3

2

1

1

1

5

   

   

2

﹣3

   

   

﹣4

1

   

   

﹣5

﹣2

   

   

﹣3

﹣6

   

   

(2)觀察(1)中的表格內(nèi)容,猜想|AB|=   ;(用含xA,xB的式子表示,不用說理)

(3)已知點A在數(shù)軸上的坐標是﹣2,且|AB|=8,利用(2)中的結(jié)論求點B在數(shù)軸上的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解本校學生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調(diào)查了若干名學生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調(diào)查活動中,一共調(diào)查了名學生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是度.
(3)若該校有學生1200名,估計愛好乒乓球運動的約有多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過點AAD∥BC,且點D在點A的右側(cè).點P從點A出發(fā)沿射線AD方向以每秒1cm的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2cm的速度運動,在線段QC上取點E,使得QE =2cm,連結(jié)PE,設(shè)點P的運動時間為t秒.

(1)①CE= 用含t的式子表示)

PE⊥BC,BQ的長;

(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩個不透明的乒乓球盒,甲盒中裝有1個白球和2個紅球,乙盒中裝有2個白球和若干個紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機摸出一個球,摸到紅球的概率為
(1)求乙盒中紅球的個數(shù);
(2)若先從甲盒中隨機摸出一個球,再從乙盒中隨機摸出一個球,請用樹形圖或列表法求兩次摸到不同顏色的球的概率.

查看答案和解析>>

同步練習冊答案