【題目】在平面直角坐標系中,直線l1ykx+bk、b為常數(shù),且k0)經(jīng)過A、B兩點,點Ay軸上.

1)若B點坐標為(﹣12).

b   (用含有字母k的代數(shù)式表示)

當△OAB的面積為2時,求直線l1的表達式;

2)若B點坐標為(k2b,bb2),點C(﹣1,s)也在直線l1上,

s的值;

如果直線l1ykx+bk0)與直線l2yx交于點(x1y1),且0x12,求k的取值范圍.

【答案】1①2+ky2x+4;(2①0;

【解析】

(1)①把B(﹣1,2)代入y=kx+b即可求得b的值;

②根據(jù)三角形的面積即可求得k的值,從而可得直線解析式;

(2)①把點B和點C代入函數(shù)解析式即可求得s的值;

②根據(jù)兩條直線的交點坐標的橫坐標的取值范圍即可求得k的取值范圍.

(1)B(﹣1,2)代入y=kx+b,

b=2+k

故答案為:2+k;

SOAB=(2+k1=2

解得:k=2,

所以直線l1的表達式為:y=2x+4;

(2)∵直線l1y=kx+b經(jīng)過點B(k2b,bb2)和點C(﹣1,s).

k(k2b)+b=bb2,﹣k+b=s

整理得,(bk)2=0,

所以s=bk=0

∵直線l1y=kx+b(k0)與直線l2y=x交于點(x1,y1),

kx1+b=x1

(1k)x1=b,

bk=0

b=k,

x1=

0x12

02

解得:

答:k的取值范圍是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB3,AD8,點EBC的中點,連接AE,EF是∠AEC的平分線,交AD于點F,則FD=( 。

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解八年級學生的視力情況,對八年級的學生進行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進行統(tǒng)計整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.

視力

頻數(shù)(人)

頻率

4.0≤x<4.3

20

0.1

4.3≤x<4.6

40

0.2

4.6≤x<4.9

70

0.35

4.9≤x<5.2

a

0.3

5.2≤x<5.5

10

b

(1)在頻數(shù)分布表中,a=   ,b=   

(2)將頻數(shù)分布直方圖補充完整;

(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國魏晉時期數(shù)學家劉徽編撰的最早一部測量數(shù)學著作《海島算經(jīng)》中有一題今有望海島,立兩表齊高三丈前后相去千步令后表與前表參相直.從前表卻行一百二十三步,人目著地,取望島峰與表末參合.從后表卻行一百二十七步,人目著地取望島峰亦與表末參合.問島高幾何?

譯文今要測量海島上一座山峰AH的高度,B處和D處樹立標桿BCDE,標桿的高都是3,BD兩處相隔1000步(1=10,1=6尺),并且AH,CBDE在同一平面內(nèi).從標桿BC后退123步的F處可以看到頂峰A和標桿頂端C在同一直線上;從標桿ED后退127步的G處可以看到頂峰A和標桿頂端E在同一直線上.則山峰AH的高度是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結構性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO 1.2 米,當車門打開角度∠AOB40°時,車門是否會碰到墻?請說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,過⊙C上一點P作⊙C的切線l.當入射光線照射在點P處時產(chǎn)生反射,且滿足反射光線與切線l的夾角和入射光線與切線l的夾角相等P稱為反射點.規(guī)定光線不能“穿過”⊙C,即當入射光線在⊙C外時,只在圓外進行反射當入射光線在⊙C內(nèi)時,只在圓內(nèi)進行反射.特別地,圓的切線不能作為入射光線和反射光線.光線在⊙C外反射的示意圖如圖1所示其中∠1=∠2

1)自⊙C內(nèi)一點出發(fā)的入射光線經(jīng)⊙C第一次反射后的示意圖如圖2所示,P1是第1個反射點.請在圖2中作出光線經(jīng)⊙C第二次反射后的反射光線和反射點P3;

2)當⊙O的半徑為1,如圖3

①第一象限內(nèi)的一條入射光線平行于y,且自⊙O的外部照射在圓上點P此光線經(jīng)⊙O反射后,反射光線與x軸平行則反射光線與切線l的夾角為___________°;

②自點M0,1)出發(fā)的入射光線在⊙O內(nèi)順時針方向不斷地反射.若第1個反射點是P1,第二個反射點是P2,以此類推,8個反射點是P8恰好與點M重合則第1個反射點P1的坐標為___________;

3)如圖4,M的坐標為(0,2),M的半徑為1.第一象限內(nèi)自點O出發(fā)的入射光線經(jīng)⊙M反射后反射光線與坐標軸無公共點,求反射點P的縱坐標的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC的頂點A,C的坐標分別為(﹣4,5),(﹣1,3).

1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系,標注原點以及x軸、y軸;

2)作出△ABC關于y軸對稱的△ABC′,并寫出點B′的坐標;

3)點Px軸上的動點,在圖中找出使△ABP周長最小時的點P,直接寫出點P的坐標是:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商經(jīng)銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.

(1)二月份冰箱每臺售價為多少元?

(2)為了提高利潤,該經(jīng)銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?

(3)三月份為了促銷,該經(jīng)銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現(xiàn)金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的半圓上,AB8,∠CBA30°,點D在線段AB上運動,點E與點D關于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結論:①CECF;線段EF的最小值為;AD2時,EF與半圓相切;若點F恰好落在BC上,則AD;當點D從點A運動到點B時,線段EF掃過的面積是.其中正確結論的序號是

查看答案和解析>>

同步練習冊答案