【題目】如圖,已知等邊△ABC的邊長為4,點(diǎn)P,Q分別是邊BCAC上一點(diǎn),PB1,則PA_____,若BQAP,則AQ_____

【答案】 3

【解析】

連接AP,過AAD⊥BCD,根據(jù)等邊三角形的性質(zhì)得到BDCDBC42,∠BAD30°,根據(jù)含30°直角三角形的性質(zhì)以及勾股定理可得出PA的長;連接BQ,過BBH⊥ACH,先根據(jù)等邊三角形的性質(zhì)可得出AH的長,在RtBHQ中,根據(jù)勾股定理可求出HQ的長,從而可得出結(jié)果.

解:連接AP,過AADBCD,

∵△ABC是等邊三角形,

BDCDBC42,∠BAD30°,

BD=AB,∴ADAB2,

PB1,∴PD1,

PA;

連接BQ,過BBHACH,

AHAC2,

BHAD2,

HQ1,

AQAH+HQ3,

故答案為:;3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車,綠色出行現(xiàn)如今騎共享單車出行不但成為一種時(shí)尚,也稱為共享經(jīng)濟(jì)的一種新形態(tài),某校九(1班同學(xué)在街頭隨機(jī)調(diào)查了一些騎共享單車出行的市民并將他們對各種品牌單車的選擇情況繪制成如下兩個(gè)不完整的統(tǒng)計(jì)圖(A摩拜單車;Bofo單車;CHelloBike.請根據(jù)圖中提供的信息,解答下列問題

1求出本次參與調(diào)查的市民人數(shù);

2將上面的條形圖補(bǔ)充完整

3若某區(qū)有10000名市民騎共享單車出行,根據(jù)調(diào)查數(shù)據(jù)估計(jì)該區(qū)有多少名市民選擇騎摩托單車出行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“太原市批發(fā)市場”與“西安市批發(fā)市場”之間的商業(yè)往來頻繁, 如圖,“太原市批發(fā)市場”“西安市批發(fā)市場”與“長途汽車站”在同一線路上,每天中午12:00一輛客車由“太原市批發(fā)市場”駛往“長途汽車站”,一輛貨車由“西安市批發(fā)市場”駛往“太原市批發(fā)市場”,假設(shè)兩車同時(shí)出發(fā),勻速行駛,圖2分別是客車、貨車到“長途汽車站”的距離與行駛時(shí)間之間的函數(shù)圖像.

請你根據(jù)圖象信息解決下列問題:

1)由圖 2 可知客車的速度為 km/h,貨車的速度為 km/h;

2)根據(jù)圖 2 直接寫出直線 BC 的函數(shù)關(guān)系式為 ,直線 AD 的函數(shù)關(guān)系式為 ;

3)求點(diǎn)B的坐標(biāo),并解釋點(diǎn)B的實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中ABAC,由于某種原因,由CA的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)HA、H、B在一條直線上),并新修一條路CH,測得CB3千米,CH2.4千米,HB1.8千米.

1)問CH是否為從村莊C到河邊的最近路?(即問:CHAB是否垂直?)請通過計(jì)算加以說明;

2)求原來的路線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB≌△ADC,點(diǎn)B和點(diǎn)C是對應(yīng)頂點(diǎn),∠O=∠D90°,記∠OADα,∠ABOβ,當(dāng)BCOA時(shí),αβ之間的數(shù)量關(guān)系為( 。

A.αβB.αC.α+β90°D.α+β180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(知識背景)我國古代把直角三角形較短的直角邊稱為“勾”,較長的的直角邊稱為“股”,斜邊稱為“弦”.據(jù)《周髀算經(jīng)》記載,公元前1000多年就發(fā)現(xiàn)了“勾三股四弦五”的結(jié)論.像34、5這樣為三邊長能構(gòu)成直角三角形的3個(gè)正整數(shù),稱為勾股數(shù).

(應(yīng)用舉例)

觀察3,45;5,1213;724,25

可以發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過,

當(dāng)勾為3時(shí),股,弦;

當(dāng)勾為5時(shí),股,弦;

當(dāng)勾為7時(shí),股,弦

請仿照上面三組樣例,用發(fā)現(xiàn)的規(guī)律填空:

1)如果勾用,且為奇數(shù))表示時(shí),請用含有的式子表示股和弦,則股  ,弦  

(問題解決)

2)古希臘的哲學(xué)家柏拉圖也提出了構(gòu)造勾股數(shù)組的公式.具體表述如下:如果,為大于1的整數(shù)),則、、為勾股數(shù).請你證明柏拉圖公式的正確性;

3)畢達(dá)哥拉斯在他找到的勾股數(shù)的表達(dá)式中發(fā)現(xiàn)弦與股的差為1,若用為任意正整數(shù))表示勾股數(shù)中最大的一個(gè)數(shù),請你找出另外兩個(gè)數(shù)的表達(dá)式分別是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,ABC=90oABO的直徑,OAC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長線于點(diǎn)P,∠A=∠PDB

(1)求證:PDO的切線;

(2)若AB=4,DA=DP,試求弧BD的長;

(3)如圖,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:

①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,

其中,正確的個(gè)數(shù)有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 今年清明節(jié)前后某茶葉銷售商在青山茶廠先后購進(jìn)兩批茶葉.第一批茶葉進(jìn)貨用了5.4萬元,進(jìn)貨單價(jià)為a/千克.購回后該銷售商將茶葉分類包裝出售,把其中300千克精裝品以進(jìn)貨單件的兩倍出售;余下的簡裝品以150/千克的價(jià)格出售,全部賣出.第二批進(jìn)貨用了5萬元,這一次的進(jìn)貨單價(jià)每千克比第一批少了20元.購回分類包裝后精裝品占總質(zhì)量的一半,以200/千克的單價(jià)出售;余下的簡裝品在這批進(jìn)貨單價(jià)的基礎(chǔ)上每千克加價(jià)40元后全部賣出.若其它成本不計(jì),第二批茶葉獲得的毛利潤是3.5萬元.

1)用含a的代數(shù)式表示第一批茶葉的毛利潤;

2)求第一批茶葉中精裝品每千克售價(jià).(總售價(jià)-總進(jìn)價(jià)=毛利潤)

查看答案和解析>>

同步練習(xí)冊答案