【題目】已知13 = 1 =×12×22, 13+23=9=×22×32,13 + 23 + 33 = 36 =×32×42, ,按照這個規(guī)律完成下列問題:

(1)13+23+33+43+53=________=× ( )2 × ( )2

(2)猜想:13+23+33++n3=___________

(3)利用(2)中的結論計算:(寫出計算過程)

113+123 + 313+143 + 153+163 + ……+393+403.

【答案】(1)225,5,6(2) ×n2×(n+1)2(3) 669375

【解析】(1) (1)13+23+33+43+53=___225_____=× ( 5 )2 × ( 6 )2

(2) ×n2×(n+1)2

(3) 解:原式=13+23+33+……+393+403-(13+23+33++103………………10分

=×402×412×102×112 ………………12分

=672400-3025

=669375

認真分析,發(fā)現(xiàn)規(guī)律,按照規(guī)律求解

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料

通過小學的學習我們知道,分數(shù)可分為真分數(shù)假分數(shù).而假分數(shù)都可化為帶分數(shù),如:

我們定義:在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式

如: , 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.

類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).

如: ;

再如:

解決下列問題:

1)分式 分式(填真分式假分式);

2)假分式可化為帶分式 的形式;

3)如果分式的值為整數(shù),那么x的整數(shù)值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)商進行商鋪促銷,廣告上寫著如下條款:投資者購買商鋪后,必須由開發(fā)商代租賃5年,5年期滿后由開發(fā)商以比原商鋪標價高20%的價格進行回購,投資者可在以下兩種購鋪方案中做出選擇:

方案一:按照商鋪標價一次性付清鋪款,每年可獲得的租金為商鋪標價的10%

方案二:按商鋪標價的八折一次性付清鋪款,前3年商鋪的租金收益歸開發(fā)商所有,3年后每年可獲得的租金為商鋪標價的9%

1)問投資者選擇哪種購鋪方案5年后所獲得的投資收益率更高?為什么?

(注:投資收益率=×100%

2)對同一標價的商鋪,甲選擇了購鋪方案一,乙選擇了購鋪方案二,那么5年后兩人獲得的收益相差7.2萬元.問甲乙兩人各投資了多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC的外側作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.

(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,點PBC邊中點,直線a繞頂點A旋轉,若B、P在直線a的異側,BM直線a于點M,CN直線a于點N,連接PM、PN;

(1) 延長MPCN于點E(如圖2)。求證:△BPM△CPE;求證:PM=PN

(2) 若直線a繞點A旋轉到圖3的位置時,點B、P在直線a的同側,其它條件不變。此時

PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;

(3) 若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變。請直接判斷四邊形MBCN

的形狀及此時PM=PN還成立嗎?不必說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知xm=5,xn=4,則x2m+n的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四人做傳數(shù)游戲,甲任報一個數(shù)給乙,乙把這個數(shù)加1傳給丙,丙再把所得的數(shù)平方后傳給丁,丁把所聽到的數(shù)減1報出答案.若甲報的數(shù)為﹣9,則丁的答案是( 。

A.63B.52C.30D.17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的:若由甲隊先做20天,剩下的工程再由甲、乙兩隊合作60天完成.

(1)求甲、乙兩隊單獨完成這項工程各需多少天?

(2)已知甲隊每天的施工費用為8.6萬元,乙隊每天的施工費用為5.4萬元,工程預算的施工費用為1000萬元.若在甲、乙工程隊工作效率不變的情況下使施工時間最短,問擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的所有內(nèi)角與它的一個外角之和是2018°,求這個外角的度數(shù)和它的邊數(shù)

【答案】38° ; 邊數(shù)13

【解析】試題分析根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.

試題解析:設多邊形的邊數(shù)是n,加的外角為α,則

(n-2)180°+α=2018°,

α=2378°-180°n,又0<α<180°,

0<2378°-180°n<180°,

解得: n

n為正整數(shù),

可得n=13,

此時α=38°滿足條件,

這個外角的度數(shù)是38°,它的13邊形

【點睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關鍵.

型】解答
束】
22

【題目】已知, (1) ; (2) .

查看答案和解析>>

同步練習冊答案