指出全等三角形△ABC和△CDA的對應(yīng)邊和對應(yīng)角.對應(yīng)邊是________,對應(yīng)角是________

答案:
解析:

AB和CD、AC和AC、BC和AD,∠BAC與∠DCA、∠B和∠D、∠ACB和∠CAD


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

24、閱讀材料,解決問題.
小聰在探索三角形中位線性質(zhì)定理證明的過程中,得到了如下啟示:一條線段經(jīng)過另一線段的中點,則延長前者,并且長度相等,就能構(gòu)造全等三角形.如圖,D是△ABC的AC邊的中點,E為AB上任一點,延長ED至F,使DF=DE,連接CF,則可得△CFD≌△AED,從而把△ABC剪拼成面積相等的四邊形BCFE.你能從小聰?shù)姆此贾械玫絾⑹締幔?br />(1)如圖1,已知△ABC,試著剪一刀,使得到的兩塊圖形能拼成平行四邊形.
①把剪切線和拼成的平行四邊形畫在圖1上,并指出剪切線應(yīng)符合的條件.
②思考并回答:要使上述剪拼得到的平行四邊形成為矩形,△ABC的邊或角應(yīng)符合什么條件?菱形呢?正方形呢?(直接寫出用符號表示的條件)
(2)如圖2,已知銳角△ABC,試著剪兩刀,使得到的三塊圖形能拼成矩形,把剪切線和拼成的矩形畫在圖2上,并指出剪切線應(yīng)符合的條件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖所示,已知直線AM、DF,C、E分別在直線AM、DF上,小華想知道∠ACE和∠DEC是否互補,但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連接CF,再指出CF的中點O,然后連接EO并延長EO和直線AM相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BC=EF.以下是他的想法,請你填上根據(jù).
小華是這樣想的:
因為CF和BE相交于點O,
根據(jù)
對頂角相等
得出∠COB=∠EOF;
而O是CF的中點,那么CO=FO,又已知EO=BO,
根據(jù)
SAS
得出△COB≌△FOE,
根據(jù)
全等三角形的對應(yīng)邊相等
得出BC=EF,
根據(jù)
全等三角形的對應(yīng)角相等
得出∠BCO=∠F.
既然∠BCO=∠F,根據(jù)
內(nèi)錯角相等
得出AB∥DF,
既然AB∥DF,根據(jù)
兩直線平行,同旁內(nèi)角互補
得出∠ACE和∠DEC互補

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,E、F、G分別是等邊△ABC的邊AB、BC、AC的中點.
(1)圖中有多少個三角形?
(2)指出圖中一對全等三角形,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,D為AB邊上一點,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,圖中有全等三角形嗎?指出來并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,E、F、G分別是等邊△ABC的邊AB、BC、AC的中點.
(1)圖中有多少個三角形?
(2)指出圖中一對全等三角形,并給出證明.

查看答案和解析>>

同步練習冊答案