已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件。市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格 ,每漲價(jià)一元,每星期要少賣出10件。該商品應(yīng)定價(jià)為多少元時(shí),商場(chǎng)能獲得最大利潤(rùn)?
65,6250.
解析試題分析:可設(shè)商品定價(jià)為未知數(shù),商場(chǎng)利潤(rùn)=每件商品的利潤(rùn)×(300-10×相對(duì)于60提高的價(jià)格),進(jìn)而判斷出二次函數(shù)的對(duì)稱軸,得到相應(yīng)的定價(jià)和最大利潤(rùn)即可.
設(shè)商品定價(jià)為x元,商場(chǎng)每星期的利潤(rùn)為y元.
y=(x-40)[300-10×(x-60)]=(x-40)(-10x+900),
∴x==65元時(shí),
商場(chǎng)利潤(rùn)最大為:25×250=6250元.
答:商品定價(jià)為65元時(shí),商場(chǎng)利潤(rùn)最大為6250元.
考點(diǎn):二次函數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
某賓館有30個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天120元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于210元.設(shè)每個(gè)房間的房?jī)r(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤(rùn)為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
(11分)如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)A(-1,0)、B(4,5)兩點(diǎn),過(guò)點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線上的一個(gè)點(diǎn),直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,□ABCD中,對(duì)角線BD⊥AB,AB=5,AD邊上的高為.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG與□ABCD位于直線AD的同側(cè),點(diǎn)F與點(diǎn)D重合,GF與AD在同一直線上.△EFG從點(diǎn)D出發(fā)以每秒1個(gè)單位的速度沿射線DA方向平移,當(dāng)點(diǎn)G到點(diǎn)A時(shí)停止運(yùn)動(dòng);同時(shí)點(diǎn)P也從點(diǎn)A出發(fā),以每秒3個(gè)單位的速度沿折線AD→DC方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)求的長(zhǎng)度;
(2)在平移的過(guò)程中,記與相互重疊的面積為,請(qǐng)直接寫出面積與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)如圖2,在運(yùn)動(dòng)的過(guò)程中,若線段與線段交于點(diǎn),連接.是否存在這樣的時(shí)間,使得為等腰三角形?若存在,求出對(duì)應(yīng)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在氣候?qū)θ祟惿鎵毫θ遮吋哟蟮慕裉,發(fā)展低碳經(jīng)濟(jì),全面實(shí)現(xiàn)低碳生活成為人們的共識(shí),某企業(yè)采用技術(shù)革新,節(jié)能減排,經(jīng)分析前5個(gè)月二氧化碳排放量y(噸)與月份x(月)之間的函數(shù)關(guān)系是y=-2x+50.
(1)隨著二氧化碳排放量的減少,每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤(rùn)也有所提高,且相應(yīng)獲得的利潤(rùn)p(萬(wàn)元)與月份x(月)的函數(shù)關(guān)系如圖所示,那么哪月份,該企業(yè)獲得的月利潤(rùn)最大?最大月利潤(rùn)是多少萬(wàn)元?
(2)受國(guó)家政策的鼓勵(lì),該企業(yè)決定從6月份起,每月二氧化碳排放量在上一個(gè)月的基礎(chǔ)上都下降a%,與此同時(shí),每排放一噸二氧化碳,企業(yè)相應(yīng)獲得的利潤(rùn)在上一個(gè)月的基礎(chǔ)上都增加50%,要使今年6、7月份月利潤(rùn)的總和是今年5月份月利潤(rùn)的3倍,求a的值(精確到個(gè)位).
(參考數(shù)據(jù):=7.14,=7.21,=7.28,=7.35)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
(1)點(diǎn)P將要運(yùn)行路徑AD的長(zhǎng)度為 ;點(diǎn)Q將要運(yùn)行的路徑折線CB—BA的長(zhǎng)度為 .
(2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(zhǎng)(a≤),當(dāng)t =4秒時(shí):
①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請(qǐng)求出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+n與x軸、y軸分別交于B、C兩點(diǎn),拋物線y=ax2+bx+3(a≠0)過(guò)C、B兩點(diǎn),交x軸于另一點(diǎn)A,連接AC,且tan∠CAO=3.
(1)求拋物線的解析式;
(2)若點(diǎn)P是射線CB上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線,垂足為H,交拋物線于Q,設(shè)P點(diǎn)橫坐標(biāo)為t,線段PQ的長(zhǎng)為d,求出d與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)M在拋物線上,連接MQ、MH、PM,且.MP平分∠QMH,求出t值及點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=x2-2x+c的頂點(diǎn)A在直線l:y=x-5上.
(1)求拋物線頂點(diǎn)A的坐標(biāo);
(2)設(shè)拋物線與y軸交于點(diǎn)B,與x軸交于點(diǎn)C、D(C點(diǎn)在D點(diǎn)的左側(cè)),試判斷△ABD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在平面直角坐標(biāo)系xoy中,二次函數(shù)y=-2x²+bx+c的圖像經(jīng)過(guò)點(diǎn)A(-3,0)和點(diǎn)B(0,6)。(1)求此二次函數(shù)的解析式;(2)將這個(gè)二次函數(shù)的圖像向右平移5個(gè)單位后的頂點(diǎn)設(shè)為C,直線BC與x軸相交于點(diǎn)D,求∠sin∠ABD;(3)在第(2)小題的條件下,連接OC,試探究直線AB與OC的位置關(guān)系,并且說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com