如圖,已知A,B,C,D,E均在⊙O上,且AC為⊙O的直徑,則∠A+∠B+∠C=    度.
【答案】分析:連接AE,根據(jù)圓周角定理可證∠B=∠EAD,又因為AC為⊙O的直徑,可證∠AEC=90°,得到∠DAC+∠B+∠C=∠DAC+∠EAD+∠C=∠C+∠EAC=90°.
解答:解:連接AE,
則∠B=∠EAD,
∵AC為⊙O的直徑,
∴∠AEC=90°,
∴∠DAC+∠B+∠C=∠DAC+∠EAD+∠C=∠C+∠EAC=90°.
即∠A+∠B+∠C=90°.
故答案為:90°.
點評:本題考查了圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;和直徑所對的圓周角是直角的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習(xí)冊答案