【題目】如圖,在△ABC中,AB=AC,BC=4,△ABC的面積是16,AC邊的垂直平分線EF分別交AC,AB邊于點E,F. 若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為()
A.4B.5C.10D.8
【答案】C
【解析】
連接AD,AM,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.
連接AD,AM.
∵△ABC是等腰三角形,點D是BC邊的中點,
∴AD⊥BC,
∴S△ABC=BCAD=×4×AD=16,解得AD=8,
∵EF是線段AC的垂直平分線,
∴點C關于直線EF的對稱點為點A,
∴MA=MC,
∵AD≤AM+MD,
∴AD的長為CM+MD的最小值,
∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍船只停在C處海域,AB=60(+3)海里,在B處測得C在北偏東45°方向上,A處測得C在北偏西30°方向上,在海岸線AB上有一等他D,測得AD=100海里.
(1)分別求出AC,BC(結果保留根號)
(2)已知在燈塔D周圍80海里范圍內(nèi)有暗礁群,在A處海監(jiān)船沿AC前往C處盤看,圖中有無觸礁的危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于、兩點,點在原點的左側(cè),點的坐標為,與軸交于點,點是直線下方的拋物線上一動點.
求這個二次函數(shù)的表達式.
連接、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.
當點運動到什么位置時,四邊形的面積最大?求出此時點的坐標和四邊形的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是等邊三角形,點是的中點,點在射線上,點在射線上,.
(1)如圖1,若點與點重合,求證:;
(2)如圖2,若點在線段上,點在線段上,求的值;
(3)如圖3,若,直接寫出的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從A地到B地的公路需要經(jīng)過C地,根據(jù)規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的長(結果精確到0.1千米)
(參考數(shù)據(jù):sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△EBD中,EB=ED,點C在BD上,CE=CD,BE⊥CE,A是CE延長線上一點,EA=EC.
(1)求∠EBC的度數(shù);
(2)求證△ABC為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結BE交MN于點F.已知點A的坐標為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標;
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,將任意兩點P(x1,y1)與Q(x2,y2)之間的“直距”定義為:DPQ=|x1﹣x2|+|y1﹣y2|.
例如:點M(1,﹣2),點N(3,﹣5),則DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知點A(1,0)、點B(﹣1,4).
(1)則DAO= ,DBO= ;
(2)如果直線AB上存在點C,使得DCO為2,請你求出點C的坐標;
(3)如果⊙B的半徑為3,點E為⊙B上一點,請你直接寫出DEO的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com