分析 過(guò)點(diǎn)C1作C1F⊥BA1于點(diǎn)F,由旋轉(zhuǎn)的性質(zhì)得到∠ABC=∠A1BC1,AB=A1B,BC=BC1,求得∠ABA1=∠CBC1,推出B,C,A,O四點(diǎn)共圓,連接BO,根據(jù)圓周角定理得到∠AOB=∠ACB=90°,AO=A1O,同理B,O,C1A1四點(diǎn)共圓,根據(jù)勾股定理得到AA1=$\sqrt{A{C}^{2}+C{{A}_{1}}^{2}}$=3$\sqrt{10}$,∴AO=$\frac{3}{2}$$\sqrt{10}$,推出△CDB∽△A1BE,同理△A1BE∽△ADO,設(shè)S△CDB=x,S四邊形BDOE=y,則S${\;}_{△{A}_{1}EB}$$\frac{25}{16}$x,S△ADO=$\frac{45}{32}$x,于是得到S${\;}_{△AC{A}_{1}}$=$\frac{1}{2}$×3×(4+5)=$\frac{27}{2}$,由CO平分△ACA1的面積,得到S${\;}_{△CO{A}_{1}}$=$\frac{1}{2}$S${\;}_{△AC{A}_{1}}$=$\frac{27}{4}$,S${\;}_{△AB{A}_{1}}$=$\frac{1}{2}$×5×3=$\frac{15}{2}$,解方程組即可得到結(jié)論.
解答 解:由旋轉(zhuǎn)的性質(zhì)得:∠ABC=∠A1BC1,AB=A1B,BC=BC1,
∴∠ABA1=∠CBC1,
∴△ABA1∽△CBC1,
∴∠OAB=∠OCB,
∴B,C,A,O四點(diǎn)共圓,
連接BO,
∴∠AOB=∠ACB=90°,AO=A1O,同理B,O,C1A1四點(diǎn)共圓,
∵∠ACB=90°,
∴AA1=$\sqrt{A{C}^{2}+C{{A}_{1}}^{2}}$=3$\sqrt{10}$,
∴AO=$\frac{3}{2}$$\sqrt{10}$,
∵∠ABC=∠A1BC1,∠DCB=∠DC1B=∠CA1E,
∴△CDB∽△A1BE,同理△A1BE∽△ADO,
設(shè)S△CDB=x,S四邊形BDOE=y,
則S${\;}_{△{A}_{1}EB}$$\frac{25}{16}$x,S△ADO=$\frac{45}{32}$x,
∴S${\;}_{△AC{A}_{1}}$=$\frac{1}{2}$×3×(4+5)=$\frac{27}{2}$,
∵CO平分△ACA1的面積,
∴S${\;}_{△CO{A}_{1}}$=$\frac{1}{2}$S${\;}_{△AC{A}_{1}}$=$\frac{27}{4}$,S${\;}_{△AB{A}_{1}}$=$\frac{1}{2}$×5×3=$\frac{15}{2}$,
∴解方程組$\left\{\begin{array}{l}{(1+\frac{25}{16})x+y=\frac{27}{4}}\\{(\frac{25}{16}+\frac{45}{32})x+y=\frac{15}{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=\frac{24}{13}}\\{y=\frac{105}{52}}\end{array}\right.$,
∴四邊形BDOE的面積=$\frac{105}{52}$.
點(diǎn)評(píng) 本題考查了旋轉(zhuǎn)的性質(zhì),相似三角形的判定和性質(zhì),三角形面積的計(jì)算,四點(diǎn)共圓,熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 三個(gè)點(diǎn)確定一個(gè)圓 | |
B. | 同弧所對(duì)的圓周角與圓心角相等 | |
C. | 直徑是圓中最長(zhǎng)的弦 | |
D. | 圓是軸對(duì)稱圖形,不是中心對(duì)稱圖形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com