【題目】解下列方程或方程組:

13x-(x-5)=2(2x-1);

2;

3

4

【答案】1x=;(2y=;(3;(4

【解析】

1)先去括號,再移項,合并同類項,系數(shù)化為1即可得到方程的解;

2)先去分母,再去括號、移項,合并同類項,系數(shù)化為1即可得到方程的解;

3)根據(jù)加減法解方程組;

4)先將方程組中的兩個方程分別化簡,再利用加減法解方程組.

13x-(x-5)=2(2x-1),

3x-x+5=4x-2,

2x-4x=-2-5,

-2x=-7,

x=;

2

3(y+2)-4(2y-1)=24,

3y+6-8y+4=24,

-5y=14,

y=;

3

①×2得:4x-6y=-10③,

②×3得:9x+6y=36④,

+④得:13x=26,

解得x=2,

x=2代入①得:4-3y=-5,

y=3,

∴原方程組的解是;

4,

將方程組化簡得,

+②得:6x=6

解得x=1,

x=1代入②得:4+3y=10,

y=2

∴原方程組的解是.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】校學生會體育部為更好的開展同學們課外體育活動,現(xiàn)對學生最喜歡的一項球類運動進行了隨機抽樣調查,根據(jù)調查的結果繪制成如圖①和②所示的兩幅不完整的統(tǒng)計圖,其中 A.喜歡籃球 B.喜歡足球 C.喜歡乒乓球,D.喜歡排球,請你根據(jù)統(tǒng)計圖提供的信息,完成下列問題:

(1)本次一共調查了  名學生;

(2)把圖①匯總條形統(tǒng)計圖補充完整;

(3)求圖②中表示“D.喜歡排球”部分所在扇形的圓心角的度數(shù);

(4)若該校有3000名學生,請你估計全?赡苡卸嗌倜麑W生喜歡足球運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一副撲克牌中,拿出紅桃2、紅桃3、紅桃4、紅桃5四張牌,洗勻后,小明從中隨機摸出一張,記下牌面上的數(shù)字為x,然后放回并洗勻,再由小華隨機摸出一張,記下牌面上的數(shù)字為y,組成一對數(shù)(x,y).

(1)用列表法或樹形圖表示出(x,y)的所有可能出現(xiàn)的結果;

(2)求小明、小華各摸一次撲克牌所確定的一對數(shù)是方程x+y=5的解的概率;

(3)小明、小華玩游戲,規(guī)則如下:組成數(shù)對和為偶數(shù)小明贏,組成數(shù)對和為奇數(shù)小華贏.你認為這個游戲公平嗎?若不公平,請重新設計一個對小明、小華都公平的游戲.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點Ay軸的正半軸上,B在第二象限,AO=a,AB=b,BOx軸正方向的夾角為150°,a2b2+ab=0.

(1)試判定△ABO的形狀;

(2)如圖1,若BCBO,BC=BO,點DCO的中點,AC、BD交于E,求證:AE=BE+CE

(3)如圖2,若點Ey軸的正半軸上一動點,以BE為邊作等邊△BEG,延長GAx軸于點P,問:APAO之間有何數(shù)量關系?試證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:RtABC,C=90°,AC=8,AB=10,直接寫出BC2=___.

(2)應用:已知正方形ABCD的邊長為4,PAD邊上的一點,AP=AD,請利用兩點之間線段最短這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).

(1)在圖中作出ABC關于y軸對稱的△A1B1C1

(2)寫出點C1的坐標(直接寫答案):C1   ;

(3)△A1B1C1的面積為   ;

(4)在y軸上畫出點P,使PB+PC最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為190元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1770

第二周

4

10

3060

(進價、售價均保持不變,利潤=銷售收入一進貨成本)

1)求A、B兩種型號的電風扇的銷售單價;

2)若超市準備用不多于5300元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標,若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】、圖、圖3×3的正方形網格,每個網格圖中有3個小正方形己涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

1)在圖中選取1個空白小正方形涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.

2)在圖中選取1個空白小正方形涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.

3)在圖中選取2個空白小正方形涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.(請將三個小題依次作答在圖、圖、圖中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】錦潭社區(qū)計劃對某區(qū)域進行綠化,經投標,由甲、乙兩個工程隊一起來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用天.

1)求甲、乙兩工程隊每天各能完成的綠化面積;

2)若計劃綠化的區(qū)域面積是,甲隊每天綠化費用是萬元,乙隊每天綠化費用為萬元.

①當甲、乙各施工幾天,既能剛好完成綠化任務,又能使總費用恰好為萬元;

②按要求甲隊至少施工天,乙隊至多施工天,當甲乙各施工幾天,既能剛好完成綠化任務,又使得總費用最少(施工天數(shù)不能是小數(shù))并求最少總費用.

查看答案和解析>>

同步練習冊答案