【題目】解下列方程或方程組:
(1)3x-(x-5)=2(2x-1);
(2);
(3);
(4).
【答案】(1)x=;(2)y=;(3);(4)
【解析】
(1)先去括號,再移項,合并同類項,系數(shù)化為1即可得到方程的解;
(2)先去分母,再去括號、移項,合并同類項,系數(shù)化為1即可得到方程的解;
(3)根據(jù)加減法解方程組;
(4)先將方程組中的兩個方程分別化簡,再利用加減法解方程組.
(1)3x-(x-5)=2(2x-1),
3x-x+5=4x-2,
2x-4x=-2-5,
-2x=-7,
x=;
(2),
3(y+2)-4(2y-1)=24,
3y+6-8y+4=24,
-5y=14,
y=;
(3),
①×2得:4x-6y=-10③,
②×3得:9x+6y=36④,
③+④得:13x=26,
解得x=2,
將x=2代入①得:4-3y=-5,
y=3,
∴原方程組的解是;
(4),
將方程組化簡得,
①+②得:6x=6,
解得x=1,
將x=1代入②得:4+3y=10,
y=2,
∴原方程組的解是.
科目:初中數(shù)學 來源: 題型:
【題目】校學生會體育部為更好的開展同學們課外體育活動,現(xiàn)對學生最喜歡的一項球類運動進行了隨機抽樣調查,根據(jù)調查的結果繪制成如圖①和②所示的兩幅不完整的統(tǒng)計圖,其中 A.喜歡籃球 B.喜歡足球 C.喜歡乒乓球,D.喜歡排球,請你根據(jù)統(tǒng)計圖提供的信息,完成下列問題:
(1)本次一共調查了 名學生;
(2)把圖①匯總條形統(tǒng)計圖補充完整;
(3)求圖②中表示“D.喜歡排球”部分所在扇形的圓心角的度數(shù);
(4)若該校有3000名學生,請你估計全?赡苡卸嗌倜麑W生喜歡足球運動.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一副撲克牌中,拿出紅桃2、紅桃3、紅桃4、紅桃5四張牌,洗勻后,小明從中隨機摸出一張,記下牌面上的數(shù)字為x,然后放回并洗勻,再由小華隨機摸出一張,記下牌面上的數(shù)字為y,組成一對數(shù)(x,y).
(1)用列表法或樹形圖表示出(x,y)的所有可能出現(xiàn)的結果;
(2)求小明、小華各摸一次撲克牌所確定的一對數(shù)是方程x+y=5的解的概率;
(3)小明、小華玩游戲,規(guī)則如下:組成數(shù)對和為偶數(shù)小明贏,組成數(shù)對和為奇數(shù)小華贏.你認為這個游戲公平嗎?若不公平,請重新設計一個對小明、小華都公平的游戲.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A在y軸的正半軸上,點B在第二象限,AO=a,AB=b,BO與x軸正方向的夾角為150°,且a2b2+ab=0.
(1)試判定△ABO的形狀;
(2)如圖1,若BC⊥BO,BC=BO,點D為CO的中點,AC、BD交于E,求證:AE=BE+CE;
(3)如圖2,若點E為y軸的正半軸上一動點,以BE為邊作等邊△BEG,延長GA交x軸于點P,問:AP與AO之間有何數(shù)量關系?試證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=___.
(2)應用:已知正方形ABCD的邊長為4,點P為AD邊上的一點,AP=AD,請利用“兩點之間線段最短”這一原理,在線段AC上畫出一點M,使MP+MD最小,并直接寫出最小值的平方為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在圖中作出△ABC關于y軸對稱的△A1B1C1;
(2)寫出點C1的坐標(直接寫答案):C1 ;
(3)△A1B1C1的面積為 ;
(4)在y軸上畫出點P,使PB+PC最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為190元、170元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1770元 |
第二周 | 4臺 | 10臺 | 3060 元 |
(進價、售價均保持不變,利潤=銷售收入一進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若超市準備用不多于5300元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標,若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖①、圖②、圖③是3×3的正方形網格,每個網格圖中有3個小正方形己涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)在圖①中選取1個空白小正方形涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形.
(2)在圖②中選取1個空白小正方形涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形.
(3)在圖③中選取2個空白小正方形涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.(請將三個小題依次作答在圖①、圖②、圖③中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】錦潭社區(qū)計劃對某區(qū)域進行綠化,經投標,由甲、乙兩個工程隊一起來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用天.
(1)求甲、乙兩工程隊每天各能完成的綠化面積;
(2)若計劃綠化的區(qū)域面積是,甲隊每天綠化費用是萬元,乙隊每天綠化費用為萬元.
①當甲、乙各施工幾天,既能剛好完成綠化任務,又能使總費用恰好為萬元;
②按要求甲隊至少施工天,乙隊至多施工天,當甲乙各施工幾天,既能剛好完成綠化任務,又使得總費用最少(施工天數(shù)不能是小數(shù))并求最少總費用.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com