【題目】如圖,在的角平分線.若在邊上截取,連接,則圖中等腰三角形共有(

A.3B.5C.6D.2

【答案】B

【解析】

根據(jù)等腰三角形的判定及性質(zhì)和三角形的內(nèi)角和定理求出各角的度數(shù),逐一判斷即可.

解:∵

∴∠ABC=ACB=72°,∠A=180°-∠ABC-∠ACB=36°,△ABC為等腰三角形

的角平分線

∴∠ABD=CBD=ABC=36°

∴∠BDC=180°-∠CBD-∠C=72°,∠ABD=A

∴∠BDC=ACB,DA=DB,△DBC為等腰三角形

BC=BD,△BCD為等腰三角形

∴∠BED=BDE=180°-∠ABD=72°,△BEC為等腰三角形

∴∠AED=180°-∠BED=108°

∴∠EDA=180°-∠AED-∠A=36°

∴∠EDA=A

ED=EA,△EDA為等腰三角形

共有5個等腰三角形

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象經(jīng)過點,與反比例函數(shù)的圖象交于點

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)設(shè)M是直線AB上一點,過MMNx軸,交反比例函數(shù)的圖象于點N,若以A,O,MN為頂點的四邊形是平行四邊形,求點M的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,點A0位于坐標原點,點A1,A2A3,,A2011y軸的正半軸上,點B1,B2,B3,,B2011在二次函數(shù)位于第一象限的圖象上,若A0B1A1,A1B2A2,A2B3A3,,A2010B2011A2011都為等邊三角形,則A2010B2011A2011的邊長=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y1x與雙曲線y2(x>0)交于點A,將直線y1x向下平移4個單位后稱該直線為y3,若y3與雙曲線交于B,與x軸交于C,與y軸交于D,AO=2BC,連接AB,則以下結(jié)論錯誤的有(  )

C坐標為(3,0);②k=;③S四邊形OCBA;④2<x<4時,有y1>y2>y3;⑤S四邊形ABDO=2S△COD.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖中線段AB表示某工程的部分隧道,無人勘測飛機從隧道的一側(cè)點A出發(fā),沿著坡度為11.5的路線AE飛行,飛行至分界點C的正上方點D時,測得隧道另一側(cè)點B的俯角為23°,繼續(xù)飛行至點E,測得點B的俯角為45°,此時點E離地面的高度EF800米.

1)分別求隧道ACBC段的長度;

2)建工集團安排甲、乙兩個金牌施工隊分別從隧道兩頭向中間施工,甲隊負責AC段施工,乙隊負責BC段施工,乙每天的工作量是甲的2倍,兩隊同時開工5天后,甲隊將速度提高25%,乙隊將速度提高了150%,從而兩隊同時完成,求原計劃甲、乙兩隊每天各施工多少米.(參考數(shù)據(jù):tan23°≈0.4,cos23°≈0.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明開著汽車在平坦的公路上行駛,前放出現(xiàn)兩座建筑物A、B(如圖),在(1)處小穎能看到B建筑物的一部分,(如圖),此時,小明的視角為30°,已知A建筑物高25米.

1)請問汽車行駛到什么位置時,小明剛好看不到建筑物B?請在圖中標出這點.

2)若小明剛好看不到B建筑物時,他的視線與公路的夾角為45°,請問他向前行駛了多少米?( 精確到0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某科技物展覽大廳有A、B兩個入口,C、D、E三個出口.小昀任選一個入口進入展覽大廳, 參觀結(jié)束后任選一個出口離開.

(1)若小昀已進入展覽大廳,求他選擇從出口C離開的概率.

(2)求小昀選擇從入口A進入,從出口E離開的概率.(請用列表或畫樹狀圖求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學生國學經(jīng)典大賽.比賽項目為:.唐詩、.宋詞、.論語、.三字經(jīng).比賽形式分單人組雙人組

1)小麗參加單人組,她從中隨機抽取一個比賽項目,恰好抽中三字經(jīng)的概率是 ;

2)小紅和小明組成一個小組參加雙人組比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小紅和小明都沒有抽到論語的概率是多少?請用畫樹狀圖或列表的方法進行說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫潤有度,為愛加溫.近年來設(shè)計精巧、物美價廉的暖風機逐漸成為人們冬天必備的“取暖神器”,今年11月下旬某商場計劃購進、兩種型號的暖風機共900臺,每臺型號暖風機售價為600元,每臺型號暖風機售價為900元.

1)若要使得、兩種型號暖風機的銷售額不低于69萬元,則至多購進多少臺型號暖風機?

2)由于質(zhì)量超群、品質(zhì)卓越,11月下旬購進的兩種型號的暖風機全部售完.該商場在12上旬又購進了、兩種型號的暖風機若干臺,并且進行“雙12”促銷活動,每臺型號暖風機的售價比其11月下旬的售價優(yōu)惠,型號暖風機12月上旬的銷售量比其在(1)問條件下的最高購進量增加,每臺型號暖風機的售價比其11月下旬的售價優(yōu)惠型號暖風機12月上旬的銷售量比其在(1)問條件下的最低購進量增加,、兩種型號的暖風機在12月上旬的銷售額比(1)問中最低銷售額增加了,求的值.

查看答案和解析>>

同步練習冊答案