如圖,若在△ABD和△ACE中,有以下四個論斷:①AB=AC,②∠B=∠C,③AD=AE,④BD=CE.

請把其中三個論斷作為條件,另外一個論斷作為結(jié)論,寫出一個正確的語句:________.(用的形式寫)

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、如圖1,△ABD和△AEC均為等邊三角形,連接BE、CD.

(1)請判斷:線段BE與CD的大小關(guān)系是
BE=CD

(2)觀察圖2,當△ABD和△AEC分別繞點A旋轉(zhuǎn)時,BE、CD之間的大小關(guān)系是否會改變?

(3)觀察圖3和4,若四邊形ABCD、DEFG都是正方形,猜想類似的結(jié)論是
AE=CG
,在圖4中證明你的猜想;


(4)這些結(jié)論可否推廣到任意正多邊形(不必證明),如圖5,BB1與EE1的關(guān)系是
BB1=EE1
;它們分別在哪兩個全等三角形中
△AE1E和△AB1B中
;請在圖6中標出較小的正六邊形AB1C1D1E1F1的另五個頂點,連接圖中哪兩個頂點,能構(gòu)造出兩個全等三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•寧德)某數(shù)學興趣小組開展了一次活動,過程如下:
如圖1,在等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將一塊三角板中含45°角的頂點放在A上,從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.
(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2
同組的小穎和小亮隨后想出了兩種不同的方法進行解決;小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2)
小亮的想法:將△ABD繞點A順時針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
小敏繼續(xù)旋轉(zhuǎn)三角板,在探究中得出當45°<α<135°且α≠90°時,等量關(guān)系BD2+CE2=DE2仍然成立,先請你繼續(xù)研究:當135°<α<180°時(如圖4)等量關(guān)系BD2+CE2=DE2是否仍然成立?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABD和△AEC中,E為AD上一點,若∠DAC=∠B,∠AEC=∠BDA.求證:
AE
BD
=
AC
BA

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示,已知在△ABD和△AEC中,AC=AD,∠CAD=∠BAE,AB=AE
(1)如圖1,試說明:△ABD≌△AEC;
(2)如圖1,若∠CAD=35°,∠E=56°,∠D=40°,
①試求:∠EOB的度數(shù);
②將△AEC繞點A逆時針旋轉(zhuǎn)α度(0°<α<180°),問當α為多少度時,直線CE分別與△ABD的三邊所在的直線垂直?(請直接寫出答案).
(3)如圖2將△AEC繞點A順時針旋轉(zhuǎn)后得到△ABD,并使點D,E,A三點在同一條直線上,若AD=2AB,連接CD,若△CDE的面積為6cm2,你能求出四邊形ABDC的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

同步練習冊答案