【題目】周末,小明乘坐家門口的公交車到和平公園游玩,他先乘坐公交車0.8小時(shí)后達(dá)到書城,逗留一段時(shí)間后繼續(xù)坐公交車到和平公園,小明出發(fā)一段時(shí)間后,小明的媽媽不放心,于是駕車沿相同的路線前往和平公園,如圖是他們離家的路程與離家時(shí)間的關(guān)系圖,請(qǐng)根據(jù)圖回答下列問題:

1)小明家到和平公園的路程為 ,他在書城逗留的時(shí)間為 ;

2)圖中點(diǎn)表示的意義是

3)求小明的媽媽駕車的平均速度(平均速度=).

【答案】130,1.7;(2)小明離家2.5小時(shí)后離開書城,繼續(xù)坐公交車到和平公園;(3)小明的媽媽駕車的平均速度.

【解析】

(1)根據(jù)圖象中數(shù)據(jù)進(jìn)行計(jì)算,即可得到路程與時(shí)間;

(2)根據(jù)點(diǎn)A的坐標(biāo)即可得到點(diǎn)A的實(shí)際意義;

(3)根據(jù)相應(yīng)的路程除以時(shí)間,即可得出速度;

(1)由圖可得,小明家到和平公園的路程為30km,他在書城逗留的時(shí)間為2.5-0.8=1.7(h)

故答案為:30,1.7;

(2)由圖可得,A點(diǎn)表示小明離家2.5小時(shí)后離開書城,繼續(xù)坐公交車到和平公園,

故答案為:小明離家2.5小時(shí)后離開書城,繼續(xù)坐公交車到和平公園;

(3),

答:小明的媽媽駕車的平均速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)EAB上,點(diǎn)DCB的延長(zhǎng)線上,且EDEC

(1)(觀察猜想)當(dāng)點(diǎn)EAB的中點(diǎn)時(shí),如圖1,過點(diǎn)EEFBC,交AC于點(diǎn)F,觀察猜想得到線段AEDB的大小關(guān)系是   ;

(2)(探究證明)當(dāng)點(diǎn)E不是AB的中點(diǎn)時(shí),如圖2,上述結(jié)論是否成立,如果成立,請(qǐng)寫出解答過程,如果不成立,請(qǐng)說明理由;

(3)(拓展延伸)在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且EDEC,若△ABC的邊長(zhǎng)為2,AE1,求CD的長(zhǎng)(請(qǐng)直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+bx+c經(jīng)過點(diǎn)(2,-3)和(4,5).

(1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達(dá)式;
(3)在(2)的條件下,當(dāng)-2<x<2時(shí),直線y=m與該圖象有一個(gè)公共點(diǎn),求m的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= 與y軸交于點(diǎn)A,與直線y=﹣ 交于點(diǎn)B,以AB為邊向右作菱形ABCD,點(diǎn)C恰與原點(diǎn)O重合,拋物線y=(x﹣h)2+k的頂點(diǎn)在直線y=﹣ 上移動(dòng).若拋物線與菱形的邊AB、BC都有公共點(diǎn),則h的取值范圍是( )

A.﹣2
B.﹣2≤h≤1
C.﹣1
D.﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,M、N是BD的三等分點(diǎn),連接CM并延長(zhǎng)交AB于點(diǎn)E,連接EN并延長(zhǎng)交CD于點(diǎn)F,以下結(jié)論:
①E為AB的中點(diǎn);
②FC=4DF;
③SECF=
④當(dāng)CE⊥BD時(shí),△DFN是等腰三角形.
其中一定正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A、B、C在坐標(biāo)軸上,且A、BC的坐標(biāo)分別為、、過點(diǎn)A的直線ADy軸正半軸交于點(diǎn)D,

求直線ADBC的解析式;

如圖2,點(diǎn)E在直線上且在直線BC上方,當(dāng)的面積為6時(shí),求E點(diǎn)坐標(biāo);

的條件下,如圖3,動(dòng)點(diǎn)M在直線AD上,動(dòng)點(diǎn)Nx軸上,連接ME、NEMN,當(dāng)周長(zhǎng)最小時(shí),求周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,同底數(shù)冪的乘法法則為:am·anamn(其中a≠0,mn為正整數(shù)),類似地我們規(guī)定關(guān)于任意正整數(shù)mn的一種新運(yùn)算:h(mn)h(m)·h(n),請(qǐng)根據(jù)這種新運(yùn)算填空:

(1)h(1),則h(2)________;

(2)h(1)k(k≠0),則h(n)·h(2017)________(用含nk的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1:在四邊形ABCD中,ABAD,∠BAD120°,∠B=∠ADC90°.E,F分別是BCCD上的點(diǎn).且∠EAF60°.探究圖中線段BE,EFFD之間的數(shù)量關(guān)系并證明. (提示:延長(zhǎng)CDG,使得DGBE)

(2)如圖2,若在四邊形ABCD中,ABAD,∠B+D180°.E,F分別是BC,CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說明理由;

(3)如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西20°的A處,艦艇乙在指揮中心南偏東60°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn).1小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.(可利用(2)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知2a1的平方根是±3,3ab+2的算術(shù)平方根是4,求a3b的立方根.

2)已知a,b ,c滿足,a,b c的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案