【題目】已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B,C重合),經(jīng)過點O、P折疊該紙片,得點B′和折痕OP(如圖①)經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ(如圖②),當點C′恰好落在OA上時,點P的坐標是_____.
【答案】或
【解析】∵把△OPB沿OP折疊,使點C落在點C′處,
∴BP=PB′,OB=OB′=6,∠A=∠OB′P=90°,
∵把△CPQ沿PQ折疊,使點D落在直線OA上的點C′處,
∴CP=C′P,CQ=C′Q,∠PC′Q=∠C=90°,
設(shè)BP=B′P=x,則PC=PC′=11﹣x,
∵BC∥AC,
∴∠1=∠EPOA,
∵∠1=∠2,
∴∠2=∠C′OP,
∴OC′=PC′=11﹣x,
∴B′C′=11﹣2x,
在Rt△OB′C′中,
∵OC′2=OB′2+B′C′2,
∴62+(11﹣2x)2=(11﹣x)2,
解得x=,
∴AE=或.
故答案為或.
點睛:本題主要考查了圖形的折疊問題,矩形的性質(zhì),相似三角形的判定以及運用數(shù)形結(jié)合思想列方程的綜合運用,運用相似的性質(zhì)列比例式得出方程求出BP是解決問題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】小麗的家和學校在一條筆直的馬路旁,某天小麗沿著這條馬路上學,先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學校(在整個過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學校之間的距離y(米)與她離家時間x(分鐘)之間的函數(shù)關(guān)系.
(1)求小麗步行的速度及學校與公交站臺乙之間的距離;
(2)當8≤x≤15時,求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在凸多邊形中, 四邊形有2條對角線, 五邊形有5條對角線, 經(jīng)過觀察、探索、歸納, 你認為凸八邊形的對角線條數(shù)應該是多少條? 簡單扼要地寫出你的思考過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。
(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關(guān)系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等邊三角形ABC中,點D在AB上(點D與點A,B不重合),DE⊥BC,垂足為E,點P在BC上,且DP∥AC,△B′DE′與△BDE關(guān)于DP對稱.設(shè)BE=x,△B′DE′與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x<, ≤x<m與m≤x<n時,函數(shù)的解析式不同).
(1)填空:等邊三角形ABC的邊長為_____,圖2中a的值為_____;
(2)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com