【題目】1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開(kāi)時(shí),雙翼邊緣的端點(diǎn)AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

【答案】C

【解析】

過(guò)A作AECP于E,過(guò)B作BFDQ于F,則可得AE和BF的長(zhǎng),依據(jù)端點(diǎn)A與B之間的距離為10cm,即可得到可以通過(guò)閘機(jī)的物體的最大寬度.

如圖所示,

過(guò)A作AECP于E,過(guò)B作BFDQ于F,則

RtACE中,AE=AC=×54=27(cm),

同理可得,BF=27cm,

點(diǎn)A與B之間的距離為10cm,

通過(guò)閘機(jī)的物體的最大寬度為27+10+27=64(cm),

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,AD、BC的延長(zhǎng)線交于點(diǎn)F,點(diǎn)ECF上,且∠DEC=∠BAC

1)求證:DE是⊙O的切線;

2)當(dāng)AB=AC時(shí),若CE=2EF=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是⊙O的切線,點(diǎn)C在直徑AB的延長(zhǎng)線上.

(1)求證:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y= kx +b(k0)的圖象分別交x軸、y軸于AB兩點(diǎn),與反比例函數(shù)y=(m0)的圖象交于C、D兩點(diǎn)。已知點(diǎn)C的坐標(biāo)是(6-1),D(n3).

(1)m的值和點(diǎn)D的坐標(biāo);

(2)求線段AB的長(zhǎng)度;

(3)根據(jù)圖象直接寫(xiě)出: 當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在坐標(biāo)系中作出函數(shù)的圖象,利用圖象解答下列問(wèn)題:

1)求方程的解:

2)求不等式的解集;

3)若,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線與雙曲線的一個(gè)交點(diǎn)是

(1)求的值;

(2)設(shè)點(diǎn)是雙曲線上不同于的一點(diǎn),直線軸交于點(diǎn)

,求的值;

,結(jié)合圖象,直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】科學(xué)家為了推測(cè)最適合某種珍奇植物生長(zhǎng)的溫度,將這種植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一定時(shí)間后,測(cè)試出這種植物高度的增長(zhǎng)情況,部分?jǐn)?shù)據(jù)如下表:

溫度t/

5

3

2

植物高度增長(zhǎng)量h/mm

34

46

41

科學(xué)家推測(cè)出hmm)與t之間的關(guān)系可以近似地用二次函數(shù)來(lái)刻畫(huà).已知溫度越適合,植物高度增長(zhǎng)量越大,由此可以推測(cè)最適合這種植物生長(zhǎng)的溫度為(  )

A. 2 B. 1 C. 0 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)GCE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH

(1)填空:∠AHC   ACG;(填“>”或“<”或“=”)

(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;

(3)設(shè)AEm

①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出Sm的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.

②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).

(1)用含 a 的代數(shù)式表示 c

(2)當(dāng) a時(shí),求 x 為何值時(shí) y 取得最小值,并求出 y 的最小值.

(3)當(dāng) a時(shí),求 0≤x≤6 時(shí) y 的取值范圍.

(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時(shí),直接寫(xiě)出 a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案