【題目】如圖,在平面直角坐標(biāo)系xOy中,以點(diǎn)O為圓心的圓分別交x軸的正半軸于點(diǎn)M,交y軸的正半軸于點(diǎn)N.劣弧的長為,直線與x軸、y軸分別交于點(diǎn)A、B.
(1)求證:直線AB與⊙O相切;
(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)
【答案】(1)證明見解析;(2).
【解析】
試題(1)作OD⊥AB于D,由弧長公式和已知條件求出半徑OM=,由直線解析式求出點(diǎn)A和B的坐標(biāo),得出OA=3,OB=4,由勾股定理求出AB=5,再由△AOB面積的計算方法求出OD,即可得出結(jié)論;
(2)陰影部分的面積=△AOB的面積﹣扇形OMN的面積,即可得出結(jié)果.
試題解析:(1)證明:作OD⊥AB于D,如圖所示:
∵劣弧的長為,∴=,解得:OM=,即⊙O的半徑為,∵直線與x軸、y軸分別交于點(diǎn)A、B,當(dāng)y=0時,x=3;當(dāng)x=0時,y=4,∴A(3,0),B(0,4),∴OA=3,OB=4,∴AB==5,∵△AOB的面積=ABOD=OAOB,∴OD===半徑OM,∴直線AB與⊙O相切;
(2)解:圖中所示的陰影部分的面積=△AOB的面積﹣扇形OMN的面積==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=12,高AD=8,矩形EFGH的一邊GH在BC上,頂點(diǎn)E、F分別在AB、AC上,AD與EF交于點(diǎn)M.
(1)求證:;
(2)設(shè)EF=x,EH=y(tǒng),寫出y與x之間的函數(shù)表達(dá)式;
(3)設(shè)矩形EFGH的面積為S,求S與x之間的函數(shù)表達(dá)式,并寫出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點(diǎn)P,使△PAB的周長最小?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點(diǎn)E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點(diǎn),連接BD并延長至F,使得BD=DF,連接CF、BE.
(1)求證:DB=DE;
(2)求證:直線CF為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線MN與以AB為直徑的半圓相切于點(diǎn)C,∠A=28°.
(1)求∠ACM的度數(shù);
(2)在MN上是否存在一點(diǎn)D,使ABCD=ACBC,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列要求,解答相關(guān)問題.
(1)請補(bǔ)全以下求不等式﹣2x2﹣4x>0的解集的過程.
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點(diǎn),標(biāo)示所需,當(dāng)y=0時,求得方程﹣2x2﹣4x=0的解為 ;并用鋸齒線標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無論m取何值時,方程恒有實數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點(diǎn)間的距離為2時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)如圖①,若∠P=35°,連OC,求∠BOC的度數(shù);
(2)如圖②,若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com