【題目】如圖,△ABC中,DE是BC的垂直平分線,DE交AC于點E,連接BE,若BE=5,BC=6,則sinC=

【答案】
【解析】∵DE是BC的垂直平分線,

∴CE=BE=5,CD=BD=3,∠CDE=90°,

∴DE= =4,

∴sinC= = ,

所以答案是:

【考點精析】本題主要考查了線段垂直平分線的性質和解直角三角形的相關知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點上,結合所給的平面直角坐標系解答下列問題:

(1)將△ABC向右平移3個單位長度再向下平移2個單位長度,畫出兩次平移后的△A1B1C1;
(2)寫出A1、C1的坐標;
(3)將△A1B1C1繞C1逆時針旋轉90°,畫出旋轉后的△A2B2C1 , 求△A1B1C1旋轉過程中掃過的面積(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結論:
①4ac<b2;②a+c>b;③2a+b>0.
其中正確的有( )

A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC 的三個頂點的位置如圖所示,點 A的坐標是(-22),現(xiàn)將△ABC 平移,使點 A 變換為點 A,點 BC分別是 B、C 的對應點.

(1) 請畫出平移后的△ABC′(不寫畫法),并直接寫出點B、C的坐標:B C ;

(2) 若△ABC 內部一點 P 的坐標為(,),則點 P 的對應點 P的坐標是

(3) 連接 AB,CC,并求四邊形 ABCC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】網(wǎng)絡時代新興詞匯層出不窮.為了解大眾對網(wǎng)絡詞匯的理解,某興趣小組舉行了一個調查活動:選取四個熱詞A:“硬核人生”,B:“好嗨哦”,C:“雙擊666”,D:“杠精時代”在街道上對流動人群進行了抽樣調查,要求被調查的每位只能勾選一個最熟悉的熱詞,根據(jù)調查結果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調查中,一共調查了多少名路人?

2)補全條形統(tǒng)計圖,并求出a的值;

3)請算出扇形圖中的b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,且DE∥AC,AE∥BD.求證:四邊形AODE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境

在綜合與實踐課上,老師讓同學們以兩條平行線ABCD和一塊含60°角的直角三角尺EFG(EFG90°,∠EGF60°)”為主題開展數(shù)學活動.

操作發(fā)現(xiàn)

(1)如圖(1),小明把三角尺的60°角的頂點G放在CD上,若∠221,求∠1的度數(shù);

(2)如圖(2),小穎把三角尺的兩個銳角的頂點E、G分別放在ABCD上,請你探索并說明∠AEF與∠FGC之間的數(shù)量關系;

結論應用

(3)如圖(3),小亮把三角尺的直角頂點F放在CD上,30°角的頂點E落在AB上.若∠AEGα,則∠CFG等于______(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車行駛時的耗油量為0.1/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數(shù)圖象.

(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內的剩余油量,并計算加滿油時油箱的油量;

(2)求關于的函數(shù)關系式,并計算該汽車在剩余油量5升時,已行駛的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形ABCD的兩條邊在坐標軸上,點D與坐標原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點P從A點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經(jīng)過點B向點C運動,當點P到達點C時,矩形ABCD和點P同時停止運動,設點P的運動時間為t秒.

(1)當t=5時,請直接寫出點D,點P的坐標;
(2)當點P在線段AB或線段BC上運動時,求出△PBD的面積S關于t的函數(shù)關系式,并寫出相應t的取值范圍;
(3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當△PEO與△BCD相似時,求出相應的t值.

查看答案和解析>>

同步練習冊答案