【題目】如圖,某輪船沿正北方向航行,在點(diǎn)處測(cè)得燈塔在北偏西方向上,輪船以每小時(shí)海里的速度航行小時(shí)到達(dá)后,測(cè)得燈塔在北偏西方向上,問輪船到達(dá)燈塔的正東方向時(shí),輪船距燈塔有多遠(yuǎn)?(結(jié)果精確到海里,參考數(shù)據(jù):,,,,

【答案】此時(shí)輪船與燈塔之間的距離約為海里.

【解析】

首先作CDAB于點(diǎn)D,作BEAC于點(diǎn)E,進(jìn)而得出CDB為等腰直角三角形,再利用BE=AB求出即可.

CDAB于點(diǎn)D,作BEAC于點(diǎn)E,

由題意可知,AC=50海里.

RtACD中,∵∠ADC=90°,A=30°,

CD=AC=25海里,

AD=CD=25海里

RtBCD中,∵∠BDC=90°,CBD=75°30°=45°,

BD=CD=25海里,

AB=AD+BD=(25+25)海里

RtABE中,∵∠AEB=90°,A=30°,

BE=AB=≈34.1(海里).

答:此時(shí)輪船與燈塔C之間的距離約為34.1海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4②b2﹣4ac0;③ab0④a2﹣ab+ac0,其中正確的結(jié)論有(  )個(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx的頂點(diǎn)M(,3)關(guān)于x軸的對(duì)稱點(diǎn)為B,點(diǎn)A為拋物線與x軸的一個(gè)交點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A′;已知C為A′B的中點(diǎn),P為拋物線上一動(dòng)點(diǎn),作CDx軸,PEx軸,垂足分別為D,E.

(1)求點(diǎn)A的坐標(biāo)及拋物線的解析式;

(2)當(dāng)0<x<2時(shí),是否存在點(diǎn)P使以點(diǎn)C,D,P,E為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):

阿基米德折弦定理

阿拉伯Al-Biruni(973年~1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.

阿基米德折弦定理:如圖1,ABBC的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M的中點(diǎn),則從MBC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.

下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過程.

證明:如圖,在CB上截取CG=AB,連接MA,MB,MC和MG.∵M(jìn)是的中點(diǎn), ∴MA=MC ...

任務(wù):(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;

(2)填空:如圖(3),已知等邊△ABC內(nèi)接于,AB=2,D為圓上一點(diǎn),∠ABD=45°,AE⊥BD與點(diǎn)E,則△BDC的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在用頻率估計(jì)概率的試驗(yàn)中,統(tǒng)計(jì)了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗(yàn)最有可能的是( 。

A. 在裝有1個(gè)紅球和2個(gè)白球(除顏色外完全相同)的不透明袋子里隨機(jī)摸出一個(gè)球是白球

B. 從一副撲克牌中任意抽取一張,這張牌是紅色的

C. 擲一枚質(zhì)地均勻的硬幣,落地時(shí)結(jié)果是正面朝上

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,落地時(shí)面朝上的點(diǎn)數(shù)是6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水務(wù)部門為加強(qiáng)防汛工作,決定對(duì)某水庫大壩進(jìn)行加固.原大壩的橫截面是梯形ABCD,如圖所示,已知迎水面AB的長(zhǎng)為10,B=60°,背水面DC的長(zhǎng)度為米,加固后大壩的橫截面是梯形ABED,CE的長(zhǎng)為5.

1)已知需加固的大壩長(zhǎng)為100米,求需要填方多少立方米;

2)求新大壩背水面的坡度.(計(jì)算結(jié)果保留根號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購物的支付方式更加多樣、便捷,在一次購物中,張華和李紅都想從微信、支付寶、銀行卡、現(xiàn)金四種支付方式中選一種方式進(jìn)行支付.

(1)張華用微信支付的概率是______

(2)請(qǐng)用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中微信支付寶、銀行卡現(xiàn)金分別用字母“A”“B”“C”“D”代替)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).

(1)求證:△BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時(shí)節(jié),雄性楊樹會(huì)以漫天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_.為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如圖所示),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:

1)本次接受調(diào)查的市民公有__________人;

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)扇形統(tǒng)計(jì)圖中請(qǐng)求出扇形的圓心角度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案