【題目】拋物線y=ax2+bx的頂點(diǎn)M(,3)關(guān)于x軸的對(duì)稱點(diǎn)為B,點(diǎn)A為拋物線與x軸的一個(gè)交點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A′;已知C為A′B的中點(diǎn),P為拋物線上一動(dòng)點(diǎn),作CD⊥x軸,PE⊥x軸,垂足分別為D,E.
(1)求點(diǎn)A的坐標(biāo)及拋物線的解析式;
(2)當(dāng)0<x<2時(shí),是否存在點(diǎn)P使以點(diǎn)C,D,P,E為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)y=﹣x2+2x(2)存在點(diǎn)P(+,)或(﹣,)使得四邊形CDPE是平行四邊形
【解析】
(1)由拋物線的對(duì)稱性質(zhì)求得點(diǎn)A的坐標(biāo),然后分別將點(diǎn)A、O的坐標(biāo)代入函數(shù)解析式,列出關(guān)于a,b的方程組,通過解方程組求得它們的值即可;
(2)假設(shè)存在點(diǎn)P使得以點(diǎn)C,D,P,E為頂點(diǎn)的四邊形是平行四邊形,則PE∥CD且PE=CD.根據(jù)點(diǎn)的對(duì)稱性質(zhì)可得BF=3,結(jié)合三角形中位線定理求得PE=.根據(jù)x的取值范圍確定點(diǎn)P應(yīng)該在x軸的上方.可設(shè)點(diǎn)P的坐標(biāo)為(x,),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行解答.
(1)依題意得:拋物線y=ax2+bx經(jīng)過頂點(diǎn)M(,3)和(0,0),∴點(diǎn)A與原點(diǎn)關(guān)于對(duì)稱軸x=對(duì)稱,∴A(2,0),∴,解得:,∴拋物線的解析式為:y=﹣x2+2x;
(2)假設(shè)存在點(diǎn)P使得以點(diǎn)C,D,P,E為頂點(diǎn)的四邊形是平行四邊形,則PE∥CD且PE=CD.
由頂點(diǎn)M(,3)關(guān)于x軸的對(duì)稱點(diǎn)B(,﹣3),可得:BF=3.
連接MB交x軸于F.
∵CD⊥x軸,BM⊥x軸,∴CD∥BF.
∵C為A′B的中點(diǎn),∴CD是△A′BF的中位線,得PE=CD=BF=.
∵點(diǎn)A的坐標(biāo)是(2,0),∴當(dāng)0<x<2時(shí),點(diǎn)P應(yīng)該在x軸的上方.
可設(shè)點(diǎn)P的坐標(biāo)為(x,),∴y=﹣x2+2x=,解得:x=±,滿足0<x<2.
綜上所述:存在點(diǎn)P(+)或(﹣)使得四邊形CDPE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b(a≠0)與y軸交與點(diǎn)C,與雙曲線y=(m≠0)交于A、B兩點(diǎn),AD⊥y軸于點(diǎn)D,連接BD,已知OC=AD=2,cos∠ACD=.
(1)求直線AB和雙曲線的解析式.
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具店用2000元購(gòu)進(jìn)一批玩具,面市后,供不應(yīng)求,于是店主又購(gòu)進(jìn)同樣的玩具,所購(gòu)的數(shù)量是第一批數(shù)量的3倍,但每件進(jìn)價(jià)貴了4元,結(jié)果購(gòu)進(jìn)第二批玩具共用了6300元.若兩批玩具的售價(jià)都是每件120元,且兩批玩具全部售完.
(1)第一次購(gòu)進(jìn)了多少件玩具?
(2)求該玩具店銷售這兩批玩具共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)為加快美麗鄉(xiāng)村建設(shè),建設(shè)秀美幸福薛城,對(duì)A,B兩類村莊進(jìn)行了全面改建.根據(jù)預(yù)算,建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊共需資金300萬元;甲鎮(zhèn)建設(shè)了2個(gè)A類村莊和5個(gè)B類村莊共投人資金1140萬元.
(1)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是多少萬元?
(2)乙鎮(zhèn)3個(gè)A類美麗村莊和6個(gè)B類美麗村莊的改建共需資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校詩(shī)詞知識(shí)競(jìng)賽培訓(xùn)活動(dòng)中,在相同條件下對(duì)甲、乙兩名學(xué)生進(jìn)行了10次測(cè)驗(yàn),他們的10次成績(jī)?nèi)缦拢▎挝唬悍郑?/span>
整理,分析過程如下:
成績(jī) 學(xué)生 | ||||||
甲 | 0 | 1 | 4 | 5 | 0 | 0 |
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(1)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示,請(qǐng)補(bǔ)充完整:
學(xué)生 | 極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 83.7 | 86 | 13.21 | ||
乙 | 24 | 83.7 | 82 | 46.21 |
(2)若從甲、乙兩人中選擇一人參加知識(shí)競(jìng)賽,你會(huì)選 (填“甲”或“乙”),理由為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系
(1)如圖a,若AB∥CD,點(diǎn)P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.將點(diǎn)P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;
(2)在圖b中,將直線AB繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?
(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某輪船沿正北方向航行,在點(diǎn)處測(cè)得燈塔在北偏西方向上,輪船以每小時(shí)海里的速度航行小時(shí)到達(dá)后,測(cè)得燈塔在北偏西方向上,問輪船到達(dá)燈塔的正東方向時(shí),輪船距燈塔有多遠(yuǎn)?(結(jié)果精確到海里,參考數(shù)據(jù):,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,E、F為對(duì)角線AC上的兩點(diǎn),且AE=CF.
(1)求證:四邊形DEBF是平行四邊形;
(2)如果DE=3,EF=4,DF=5,求EB、DF兩平行線之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com