【題目】疫情過后,為了促進消費,某商場設計了一種促銷活動:在一個不透明的箱子里放有四個相同的小球,球上分別標有“10元”、“20元”、“30元”和“40元”的字樣,規(guī)定:在本商場同一日內,顧客每消費滿500元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回)。商場根據兩小球所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費500元.
(1)該順客最多可得到______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于60元的概率.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1(m為常數)交y軸于點A,與x軸的一個交點在2和3之間,頂點為B.
①拋物線y=-x2+2x+m+1與直線y=m+2有且只有一個交點;
②若點M(-2,y1)、點N(,y2)、點P(2,y3)在該函數圖象上,則y1<y2<y3;
③將該拋物線向左平移2個單位,再向下平移2個單位,所得拋物線解析式為y=-(x+1)2+m;
④點A關于直線x=1的對稱點為C,點D、E分別在x軸和y軸上,當m=1時,四邊形BCDE周長的最小值為.
其中正確判斷有( )
A.①②③④B.②③④C.①③④D.①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知雙曲線y=和直線y=-x+2,P是雙曲線第一象限上一動點,過P作y軸的平行線,交直線y=-x+2于Q點,O為坐標原點.
(1)求直線y=-x+2與坐標軸圍成三角形的周長;
(2)設△PQO的面積為S,求S的最小值.
(3)設定點R(2,2),以點P為圓心,PR為半徑畫⊙P,設⊙P與直線y=-x+2交于M、N兩點.
①判斷點Q與⊙P的位置關系,并說明理由;
②求S△MON=S△PMN時的P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的圖像經過點A(4,4),B(5,0)和原點O,點P為拋物線上的一個動點,過點P作x軸的垂線,垂足為D(m,0)(m>0),并與直線OA交于點C.
(1)求出拋物線的函數表達式;
(2)連接OP,當S△OPC=S△OCD時,求出此時的點P坐標;
(3)在直線OA上取一點M,使得以P、C、M為頂點的三角形與△OCD全等,求出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(2m+1)x+m2﹣2=0.
(1)若該方程有兩個實數根,求m的最小整數值;
(2)若方程的兩個實數根為x1,x2,且(x1﹣x2)2+m2=21,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(≠)的圖象與反比例函數 ()的圖象交于A、B兩點,與軸交于C點,點A的坐標為(,6),點C的坐標為(-2,0),且.
(1)求該反比例函數和一次函數的解析式;
(2)求點B的坐標;
(3)利用圖象求不等式:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題發(fā)現(xiàn):(1)如圖1,在等腰直角三角形中,,點為的中點,點為上一點,將射線順時針旋轉交于點,則與的數量關系為____;
問題探究:(2)如圖2,在等腰三角形中,,點為的中點,點為上一點,將射線順時針旋轉交于點,則與的數量關系是否改變,請說明理由;
問題解決:(3)如圖3,點為正方形對角線的交點,點為的中點,點為直線上一點,將射線順時針旋轉交直線于點,若,當面積為時,直接寫出線段的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com