【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)()的圖象與反比例函數(shù) ()的圖象交于A、B兩點(diǎn),與軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(,6),點(diǎn)C的坐標(biāo)為(2,0),且

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)求點(diǎn)B的坐標(biāo);

3)利用圖象求不等式:

【答案】解:(1;(2B (3,-2);(3

【解析】

1)過AAD垂直軸于點(diǎn)D,根據(jù)AC的坐標(biāo)求出AD=6,CD=n+2,已知tanACO=2,可求出n的值,把點(diǎn)的坐標(biāo)代入解析式即可求得反比例函數(shù)和一次函數(shù)解析式;

2)求出反比例函數(shù)和一次函數(shù)的另外一個(gè)交點(diǎn)即可;

3)根據(jù)圖像可知,不等式的解集為反比例函數(shù)圖像在一次函數(shù)圖像上方部分所對(duì)應(yīng)的的x的取值.

解:(1)過AAD垂直軸于點(diǎn)D,

A(6),C(20),

AD6,CD,

RtACD中,

,

解得:

A的坐標(biāo)為(1,6),

又∵A上,

,

∴反比例函數(shù)解析式為:

∵一次函數(shù)A(1,6)C(2,0)

,解得:

∴一次函數(shù)解析式為:;

2)解方程組:,

解得:(舍去),,

B的坐標(biāo)為(3,-2);

3)根據(jù)圖像可知,不等式的解集為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,⊙O經(jīng)過點(diǎn)A、C、D,與BC相交于點(diǎn)E,連接AC、AE.若∠D=70°,則∠EAC的度數(shù)為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情過后,為了促進(jìn)消費(fèi),某商場(chǎng)設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有四個(gè)相同的小球,球上分別標(biāo)有“10、“20、“30“40的字樣,規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿500元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回)。商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)500元.

(1)該順客最多可得到______元購(gòu)物券;

(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于60元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ABC45°CDAB于點(diǎn)D,BE平分∠ABC,且BEAC于點(diǎn)E,與CD交于F,HBC邊的中點(diǎn),連接DHBE交于點(diǎn)G,則下列結(jié)論:

BFAC;②∠A=∠DGE;③CEBG;④SADCS四邊形CEGH;⑤DGAEDCEF中,正確結(jié)論的個(gè)數(shù)是( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c的圖象,經(jīng)過點(diǎn)A1,0),B3,0),C0,3)三點(diǎn),過點(diǎn)CD(﹣3,0)的直線與拋物線的另一交點(diǎn)為E

1)請(qǐng)你直接寫出:

拋物線的解析式   ;

直線CD的解析式   ;

點(diǎn)E的坐標(biāo)(      );

2)如圖1,若點(diǎn)Px軸上一動(dòng)點(diǎn),連接PC,PE,則當(dāng)點(diǎn)P位于何處時(shí),可使得∠CPE45°,請(qǐng)你求出此時(shí)點(diǎn)P的坐標(biāo);

3)如圖2,若點(diǎn)Q是拋物線上一動(dòng)點(diǎn),作QHx軸于H,連接QAQB,當(dāng)QB平分∠AQH時(shí),請(qǐng)你直接寫出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在反比例函數(shù)(x<0)的圖象上,連接OA,分別以點(diǎn)O和點(diǎn)A為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于BC兩點(diǎn),過B,C兩點(diǎn)作直線交x軸于點(diǎn)D,連接AD.若∠AOD30°AOD的面積為2,則k的值為( 。

A.6B.6C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點(diǎn),把PBC沿直線PC折疊,頂點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)G,過點(diǎn)BBECG,垂足為E且在AD上,BEPC于點(diǎn)F.

(1)如圖1,若點(diǎn)EAD的中點(diǎn),求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當(dāng)AD=25,且AE<DE時(shí),求cosPCB的值;

③當(dāng)BP=9時(shí),求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).

(1)求實(shí)數(shù)a的值;

(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)的情況,隨機(jī)抽取部分中學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,將閱讀時(shí)長(zhǎng)分為四類:2小時(shí)以內(nèi),24小時(shí)(含2小時(shí)),46小時(shí)(含4小時(shí)),6小時(shí)及以上,并繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.

1)本次調(diào)查共隨機(jī)抽取了   名中學(xué)生,其中課外閱讀時(shí)長(zhǎng)“24小時(shí)”的有   人;

2)扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)長(zhǎng)“46小時(shí)”對(duì)應(yīng)的圓心角度數(shù)為   °;

3)若該地區(qū)共有20000名中學(xué)生,估計(jì)該地區(qū)中學(xué)生一周課外閱讀時(shí)長(zhǎng)不少于4小時(shí)的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案