【題目】如圖,ABBC,AE平分∠BADBC于點(diǎn)EAEDE,∠1+2=90°,MN分別是BA,CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F,下列結(jié)論:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有(

A. 4個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

【答案】D

【解析】

根據(jù)ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,∠1+2=90°,∠EAM和∠EDN的平分線交于點(diǎn)F,由三角形內(nèi)角和定理以及平行線的判定和性質(zhì)分別分析判斷即可.

如圖,

ABBC,AEDE,

∴∠1+AEB=90°,∠DEC+AEB=90°,

∴∠1=DEC,

又∵∠1+2=90°

∴∠DEC+2=90°,

∴∠C=90°,

∴∠B+C=180°,

ABCD,故①正確;

∴∠ADN=BAD

∵∠ADC+ADN=180°,

∴∠BAD+ADC=180°

又∵∠AEB≠BAD

AEB+ADC≠180°,故②錯(cuò)誤;

∵∠4+3=90°,∠2+1=90°,而∠3=1,

∴∠2=4,

DE平分∠ADC,故③正確;

∵∠1+2=90°,

∴∠EAM+EDN=360°-90°=270°

∵∠EAM和∠EDN的平分線交于點(diǎn)F,

∴∠EAF+EDF=×270°=135°

AEDE,

∴∠3+4=90°

∴∠FAD+FDA=135°-90°=45°,

∴∠F=180°-(∠FAD+FDA=180-45°=135°,故④正確.

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC=DAF=90°,ABACADAF,點(diǎn)D,EBC邊上的兩點(diǎn),且∠DAE45°,連接EF,BF,則下列結(jié)論:①△AFB≌△ADC;②△ABD為等腰三角形;③∠ADC=120°;④BE2DC2=DE2,其中正確的有( )個(gè)

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=2,延長(zhǎng)BC到點(diǎn)E,使CE=1,連接DE,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB-BC-CD-DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△ABP和△DCE全等時(shí),t的值____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在坐標(biāo)平面內(nèi),已知點(diǎn)A(0,3)B(6,5),

(1)連接AB,在x軸上確定點(diǎn)P,使PA=PB(用尺規(guī)作圖,保留作圖痕跡,不寫作法),并求出P點(diǎn)坐標(biāo);

(2)點(diǎn)Qx軸上的動(dòng)點(diǎn),求點(diǎn)QA、B兩點(diǎn)的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一水果店,從批發(fā)市場(chǎng)按4千克的價(jià)格購(gòu)進(jìn)10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費(fèi)用300元,據(jù)預(yù)測(cè),每天每千克價(jià)格上漲元.

設(shè)x天后每千克蘋果的價(jià)格為p元,寫出px的函數(shù)關(guān)系式;

若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出yx的函數(shù)關(guān)系式;

該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤(rùn),最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹的頂點(diǎn)AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹的頂點(diǎn)AD,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某農(nóng)戶發(fā)展養(yǎng)禽業(yè),準(zhǔn)備利用現(xiàn)有的34米長(zhǎng)的籬笆靠墻AB(墻長(zhǎng)為25米)圍成一個(gè)面積為120平方米的長(zhǎng)方形養(yǎng)雞場(chǎng),這個(gè)養(yǎng)雞場(chǎng)的長(zhǎng)和寬各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】[x]表示不超過(guò)x的最大整數(shù),例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:當(dāng)x=﹣0.5時(shí),y=0.5;②y的取值范圍是:0≤y≤1;③對(duì)于所有的自變量x,函數(shù)值y隨著x增大而一直增大.其中正確命題有   (只填寫正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案