【題目】如圖所示,在平面真角坐標(biāo)系中,點(diǎn)A.B的坐標(biāo)分別為A(a,0),B(b,0),且a,b滿(mǎn)足|a+1|+=0,點(diǎn)C的坐標(biāo)為(0,3).
(1)求a,b的值及S△ABC;
(2)若點(diǎn)M在x軸上,且S△ACM=S△ABC,試求點(diǎn)M的坐標(biāo).
【答案】(1)a=﹣1,b=5,S△ABC=9;(2)M的坐標(biāo)為(1,0)或(﹣3,0)
【解析】
(1)由|a+1|+=0結(jié)合絕對(duì)值、算術(shù)平方根的非負(fù)性即可得出a、b的值,再結(jié)合三角形的面積公式即可求出S△ABC的值;
(2)設(shè)出點(diǎn)M的坐標(biāo),找出線(xiàn)段AM的長(zhǎng)度,根據(jù)三角形的面積公式結(jié)合S△ACM=S△ABC,即可得出點(diǎn)M的坐標(biāo).
解:(1)由|a+1|+=0,|a+1|≥0,≥0
∴a+1=0,b﹣5=0,
∴a=﹣1,b=5,
∴點(diǎn)A(﹣1,0),點(diǎn)B(5,0).
又∵點(diǎn)C(0,3),
∴AB=|﹣1﹣5|=6,CO=3,
∴S△ABC=ABCO=×6×3=9.
(2)設(shè)點(diǎn)M的坐標(biāo)為(x,0),則AM=|x﹣(﹣1)|=|x+1|,
又∵S△ACM=S△ABC,
∴AMOC=×9,
∴|x+1|×3=3,
∴|x+1|=2,
即x+1=±2,
解得:x=1或﹣3,
故點(diǎn)M的坐標(biāo)為(1,0)或(﹣3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD邊上的點(diǎn),∠EAF=45°.
(1)如圖(1),試判斷EF,BE,DF間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)如圖(2),若AH⊥EF于點(diǎn)H,試判斷線(xiàn)段AH與AB的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016四川省攀枝花市)某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過(guò)14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過(guò)14噸,則超過(guò)部分每噸按市場(chǎng)價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)價(jià)分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知兩條射線(xiàn)OM∥CN,動(dòng)線(xiàn)段AB的兩個(gè)端點(diǎn)A、B分別在射線(xiàn)OM、CN上,且∠C=∠OAB=108°,F在線(xiàn)段CB上,OB平分∠AOF.
(1)請(qǐng)?jiān)趫D中找出與∠AOC相等的角,并說(shuō)明理由;
(2)判斷線(xiàn)段AB與OC 的位置關(guān)系是什么?并說(shuō)明理由;
(3)若平行移動(dòng)AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A(4,1),B(1,1)C(4,5),D(6,﹣3),E(﹣2,5)
(1)在坐標(biāo)系中描出各點(diǎn),畫(huà)出△AEC,△BCD.
(2)求出△AEC的面積(簡(jiǎn)要寫(xiě)明簡(jiǎn)答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線(xiàn)上,若AE=24,DE=17.
(1)求證:△CAD≌△CBE;
(2)求線(xiàn)段AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC為⊙O的直徑,B為⊙O上一點(diǎn),∠ACB=30°,延長(zhǎng)CB至點(diǎn)D,使得CB=BD,過(guò)點(diǎn)D作DE⊥AC,垂足E在CA的延長(zhǎng)線(xiàn)上,連接BE.
(1)求證:BE是⊙O的切線(xiàn);
(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知AB= 6,點(diǎn)C,D在線(xiàn)段AB上,AC =DB = 1,P是線(xiàn)段CD上的動(dòng)點(diǎn),分別以AP,PB為邊在線(xiàn)段AB的同側(cè)作等邊△AEP和等邊△PFB,連接EF,設(shè)EF的中點(diǎn)為G,當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),則點(diǎn)G移動(dòng)路徑的長(zhǎng)是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.
根據(jù)圖示填寫(xiě)下表:
平均數(shù)分 | 中位數(shù)分 | 眾數(shù)分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;
計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com