分析 (1)△ABC和△EAD中已經(jīng)有一條邊和一個(gè)角分別相等,根據(jù)平行的性質(zhì)和等邊對(duì)等角得出∠B=∠DAE即可證明△ABC≌△EAD(SAS),進(jìn)而得出答案;
(2)根據(jù)全等三角形的性質(zhì),利用平行四邊形的性質(zhì)求解即可.
解答 (1)證明:∵四邊形ABCD為平行四邊形,
∴AD∥BC,AD=BC.
∴∠DAE=∠AEB.
∵AB=AE,
∴∠AEB=∠B.
∴∠B=∠DAE.
在△ABC和△AED中,
$\left\{\begin{array}{l}{AB=AE}\\{∠B=∠DAE}\\{AD=BC}\end{array}\right.$,
∴△ABC≌△EAD(SAS),
∴AC=ED.
(2)解:∵AE平分∠DAB(已知),
∴∠DAE=∠BAE;
又∵∠DAE=∠AEB,
∴∠BAE=∠AEB=∠B.
∴△ABE為等邊三角形.
∴∠BAE=60°.
∵∠EAC=25°,
∴∠BAC=85°.
∴∠ACD=∠BAC=85°.
點(diǎn)評(píng) 此題主要考查了平行四邊形的基本性質(zhì)和全等三角形的判定及性質(zhì).判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com