在△ABC中,AC=AB,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,AB=5,AD=4,則BE=
 
考點(diǎn):勾股定理,三角形的面積,等腰三角形的性質(zhì)
專題:
分析:由等腰三角形的性質(zhì)和勾股定理可求得BC=6,再利用等積法可得AC•BE=BC•AD,可求得BE.
解答:解:∵AC=BC,AD⊥BC,
∴BD=CD,
在Rt△ABD中,AB=5,AD=4,
∴BD=3,
∴BC=6,
∵BE⊥AC,
∴S△ABC=
1
2
BC•AD=
1
2
AC•BE,
即6×4=5BE,
解得BE=4.8.
故答案為:4.8.
點(diǎn)評:本題主要考查等腰三角形的性質(zhì)和勾股定理,掌握等腰三角形底邊上的高、中線和頂角的平分線相互重合是解題的關(guān)鍵,注意等積法的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

規(guī)定 
.
ab
cd
.
的計(jì)算方法是:
.
ac
bd
.
=ad-bc.若
.
x-11
x+12
.
=2,則x的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,點(diǎn)O在△ABC內(nèi),且∠OBC=∠OCA,∠BOC=110°,求∠A的度數(shù)=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在-
π
3
,-2,
4
,
2
2
,3.14,(
2
0中無理數(shù)的個(gè)數(shù)是(  )
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

旗桿的影子長6米,同時(shí)測得旗桿頂端到其影子頂端的距離是10米,如果此時(shí)附近的小樹影子長3米,那么小樹有
 
米高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
9
-2sin60°+|-
3
|;
(2)(-2)3+
1
3
×(2014+π)0-|-
1
3
|+tan260°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列各式中,正確的是( 。
A、2a5•3a2=6a10
B、(x3m÷(xm2=xm
C、-(ab23=-ab6
D、a0÷a-2=
1
22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用科學(xué)記數(shù)法表示0.001 5=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有四條線段,長度依次是:2cm,3cm,4cm,5cm,從中任選三條,有幾種選法?并說說能組成三角形的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案