【題目】如圖,在四邊形ABCD中,AC、BD相交于點O,AD∥BC,∠ADC=∠ABC,OA=OB.
(1)如圖1,求證:四邊形ABCD為矩形;
(2)如圖2,P是AD邊上任意一點,PE⊥BD,PF⊥AC,E、F分別是垂足,若AD=12,AB=5,求PE+PF的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,等腰直角三角形AOB在如圖所示的位置,點B的橫坐標(biāo)為2,將△AOB繞點O按逆時針方向旋轉(zhuǎn)90°,得到△A′OB′,則點A′的坐標(biāo)為( 。
A. (1,1) B. (,)
C. (﹣1,1) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個全等的含30°角的直角三角板重疊在一起,如圖,將△A′B′C′繞AC的中點M轉(zhuǎn)動,斜邊A′B′剛好過△ABC的直角頂點C,且與△ABC的斜邊AB交于點N,連接AA′、C′C、AC′.若AC的長為2,有以下五個結(jié)論:①AA′=1;②C′C⊥A′B′;③點N是邊AB的中點;④四邊形AA′CC′為矩形;⑤A′N=B′C=,其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標(biāo)分別為﹣3,1,則下列結(jié)論正確的個數(shù)有( )①ac>0;②2a﹣b=0;③4a﹣2b+c>0;④對于任意實數(shù)m均有am2+bm≥a﹣b.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①,圖②均是的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.線段的端點都在格點上,僅用無刻度的直尺完成如下作圖,保留作圖痕跡.
(1)在圖①中畫一個鈍角,且點在格點上,使它有一邊與該邊上的高線長度相等;
(2)在圖②中畫一個五邊形,使其是軸對稱圖形,且,點、、在格點上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016黑龍江省齊齊哈爾市)如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C(0,0)
(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形ABCD中,,,點P從A開始沿邊AB向終點B以的速度移動,與此同時,點Q從點B開始沿邊BC向終點C以的速度移動,如果P,Q分別從A,B同時出發(fā),當(dāng)點Q運動到點C時,兩點停止運動設(shè)運動時間為t秒.
填空:________,________用含t的代數(shù)式表示:
當(dāng)t為何值時,PQ的長度等于5cm?
是否存在t的值,使得五邊形APQCD的面積等于?若存在,請求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com