【題目】如圖,在四邊形ABCD中,AB=AD,AC是∠BAD的角平分線.
(1)求證:△ABC≌△ADC.
(2)若∠BCD=60°,AC=BC,求∠ADB的度數(shù).
【答案】(1)詳見解析;(2)∠ADB=15°.
【解析】
(1)根據(jù)角平分線的性質(zhì)可得∠DAC=∠BAC,從而利用SAS,可判定全等.
(2)根據(jù)△ABC≌△ADC.可知BC=DC,∠ACB=∠ACD=30°,已知∠BCD=60°,故△BCD是等邊三角形.即∠CBD=60°,在△ABC中AC=BC,∠ACB=30°,可得∠CDA=75°,進(jìn)而求得∠ADB=15°.
解(1)∵AC是∠BAD的角平分線.
∴∠BAC=∠DAC,
∵AB=AD,AC=AC,
則
∴△ABC≌△ADC(SAS).
(2)∵△ABC≌△ADC,∠BCD=60°,
∴∠DCA=∠BCA=30°,
∵AC=BC,
∴∠CAB=∠CAD=,
∵在△ADO與△ABO中
,
∴△ADO≌△ABO(SAS),
∴∠AOD=∠AOB=90°,
∴∠ADB=90°75°=15°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ACD和△BCE中, AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD與BE相交于點(diǎn)P,則∠BPD的度數(shù)為( 。
A.110°B.125°C.130°D.155°
查看答案和解析>>
科目:
來源: 題型:【題目】為了解學(xué)生課余活動(dòng)情況,某校對參加繪畫、書法、舞蹈、樂器這四個(gè)課外興趣小組的人員分布情況進(jìn)行抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,解答下面的問題:
(1)此次共調(diào)查了多少名同學(xué)?
(2)將條形圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中書法部分的圓心角的度數(shù);
(3)如果該校共有1000名學(xué)生參加這4個(gè)課外興趣小組,而每個(gè)教師最多只能輔導(dǎo)本組的20名學(xué)生,估計(jì)每個(gè)興趣小組至少需要準(zhǔn)備多少名教師?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三年200名學(xué)生參加某次測評,從中隨機(jī)抽取了20名學(xué)生,記錄他們的分?jǐn)?shù),整理得到如下頻數(shù)分布直方圖:
Ⅰ從總體的200名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率是______;
Ⅱ樣本中分?jǐn)?shù)的中位數(shù)在______組;
Ⅲ已知樣本中有的男生分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等試估計(jì)總體中男生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知中,,,,CD為AB邊上中線,E是CB邊上的一個(gè)動(dòng)點(diǎn).
Ⅰ求CD的長;
Ⅱ如圖1,連接AE,交CD于點(diǎn)F,當(dāng)AE平分時(shí),求CE,CF的長;
Ⅲ如圖2,連接DE,將沿DE翻折至,連接BG,直接寫出和間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖乙,和是有公共頂點(diǎn)的等腰直角三角形,,點(diǎn)P為射線BD,CE的交點(diǎn).
如圖甲,將繞點(diǎn)A旋轉(zhuǎn),當(dāng)C、D、E在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是______.
若,,把繞點(diǎn)A旋轉(zhuǎn),
當(dāng)時(shí),求PB的長;
求旋轉(zhuǎn)過程中線段PB長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
(問題情境)
教材中小明用4張全等的直角三角形紙片拼成圖1,利用此圖,可以驗(yàn)證勾股定理嗎?
(探索新知)
從面積的角度思考,不難發(fā)現(xiàn):大正方形的面積=小正方形的面積 + 4個(gè)直角三角形的面積,從而得數(shù)學(xué)等式: ;(用含字母a、b、c的式子表示)化簡證得勾股定理:
(初步運(yùn)用)
(1)如圖1,若b=2a ,則小正方形面積:大正方形面積= ;
(2)現(xiàn)將圖1中上方的兩直角三角形向內(nèi)折疊,如圖2,若a= 4,b= 6此時(shí)空白部分的面積為 ;
(遷移運(yùn)用)
如果用三張含60°的全等三角形紙片,能否拼成一個(gè)特殊圖形呢?帶著這個(gè)疑問,小麗拼出圖3的等邊三角形,你能否仿照勾股定理的驗(yàn)證,發(fā)現(xiàn)含60°的三角形三邊a、b、c之間的關(guān)系,寫出此等量關(guān)系式及其推導(dǎo)過程.
知識(shí)補(bǔ)充:如圖4,含60°的直角三角形,對邊y :斜邊x=定值k
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個(gè)說法:①;②;③;④;其中說法正確的是
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平面直角坐標(biāo)系中,A在x軸正半軸,B(0,1),∠OAB=30°.
(1)如圖1,已知AB=2.點(diǎn)C在y軸的正半軸上,當(dāng)△ABC為等腰三角形時(shí),直接寫出點(diǎn)C的坐標(biāo)為 ;
(2)如圖2,以AB為邊作等邊△ABE,AD⊥AB交OA的垂直平分線于D,求證:BD=OE;
(3)如圖3,在(2)的條件下,連接DE交AB于F,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com