【題目】如圖,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個說法:①;②;③;④;其中說法正確的是
A. ①②B. ①②③C. ①②④D. ①②③④
【答案】D
【解析】
大正方形的面積是49,則其邊長是7,顯然,利用勾股定理可得①x2+y2=49;小正方形的面積是4,則其邊長是2,根據圖可發(fā)現y+2=x,即②x-y=2;其中④由2xy+4=49可得2xy=45①,又由x2+y2=49②,可得;還可以得出四個三角形的面積+小正方形的面積=大正方形的面積,即,化簡得④2xy+4=49;從而求解.
解:如圖
①為直角三角形,
根據勾股定理:,
故本選項正確;
②由圖可知,,
故本選項正確;
③由可得①,
又②,
①②得,,
整理得,,
,
故本選項正確.
④由圖可知,四個直角三角形的面積與小正方形的面積之和為大正方形的面積,列出等式為,
即;
故本選項正確;
正確結論有①②③④.
故選:.
科目:初中數學 來源: 題型:
【題目】(2017湖北省恩施州)如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊△ADE,延長ED交BC于點F,BC=,則圖中陰影部分的面積為______.(結果不取近似值)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】設a,b,c是△ABC的三條邊,關于x的方程x2+x+c-a=0有兩個相等的實數根,方程3cx+2b=2a的根為x=0.
(1)試判斷△ABC的形狀;
(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a,b,c為常數,且a≠0)中,x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 |
y | 0 | ﹣3 | ﹣4 | ﹣3 |
下列結論:
①ac<0;
②當x>1時,y隨x的增大而增大;
③﹣4是方程ax2+(b﹣4)x+c=0的一個根;
④當﹣1<x<0時,ax2+(b﹣1)x+c+3>0.其中正確結論的個數為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于整式(其中m是大于的整數).
(1)若,且該整式是關于x的三次三項式,求m的值;
(2)若該整式是關于x的二次單項式,求m,n的值;
(3)若該整式是關于x的二次二項式,則m,n要滿足什么條件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度,在河的南岸邊點A處,測得河的北岸邊點B在其北偏東45°方向,然后向西走60 m到達點C,測得點B在點C的北偏東60°方向,如圖②.
(1)求∠CBA的度數;
(2)求出這段河的寬(結果精確到1 m,參考數據:≈1.41,≈1.73).
① ②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線a∥b,依次有3個三角形放置在上面,它們分別是等邊三角形、等腰直角三角形、含30°角的直角三角形,直接填寫出∠1、∠2、∠3 的度數.
∠1= °;∠2= °;∠3= °.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點D是BC的中點,將△ABD沿AD翻折得到△AED,連CE,則線段CE的長等于( 。
A.2B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠xOy=90°,線段AB=10,若點A在Oy上滑動,點B隨著線段AB在射線Ox上滑動(A,B與O不重合),Rt△AOB的內切圓☉K分別與OA,OB,AB切于點E,F,P.
(1)在上述變化過程中,Rt△AOB的周長,☉K的半徑,△AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由.
(2)當AE=4時,求☉K的半徑r.
(3)當Rt△AOB的面積為S,AE為x,試求S與x之間的函數關系,并求出S最大時直角邊OA的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com