【題目】已知矩形ABCD的一條邊AD8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.如圖,已知折痕與邊BC交于點(diǎn)O,連接AP、OPOA

1)求證:;

2)若△OCP與△PDA的面積比為14,求邊AB的長(zhǎng).

【答案】(1)詳見(jiàn)解析;(2)10.

【解析】

①只需證明兩對(duì)對(duì)應(yīng)角分別相等可得兩個(gè)三角形相似;故.
根據(jù)相似三角形的性質(zhì)求出PC長(zhǎng)以及APOP的關(guān)系,然后在RtPCO中運(yùn)用勾股定理求出OP長(zhǎng),從而求出AB長(zhǎng).

∵四邊形ABCD是矩形,

AD=BC,DC=AB,DAB=B=C=D=90°.

由折疊可得:AP=AB,PO=BO,PAO=BAO,APO=B.

∴∠APO=90°.

∴∠APD=90°CPO=POC.

∵∠D=C,APD=POC.

OCPPDA.

.

OCPPDA的面積比為1:4,

OCPD=OPPA=CPDA=14√=12.

PD=2OC,PA=2OP,DA=2CP.

AD=8,

CP=4,BC=8.

設(shè)OP=x,則OB=x,CO=8x.

PCO中,

∵∠C=90,CP=4,OP=x,CO=8x,

x2=(8x)2+42.

解得:x=5.

AB=AP=2OP=10.

∴邊AB的長(zhǎng)為10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,AB4,以AB的中點(diǎn)O為圓心作圓,圓O分別與AC、BC相切于點(diǎn)D、E兩點(diǎn),則弧DE的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2014山東淄博)如圖,四邊形ABCD中,AC⊥BDBD于點(diǎn)E,點(diǎn)FM分別是AB,BC的中點(diǎn),BN平分∠ABEAM于點(diǎn)NABACBD,連接MF,NF

(1)判斷△BMN的形狀,并證明你的結(jié)論;

(2)判斷△MFN△BDC之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖山坡上有一根旗桿AB,旗桿底部B點(diǎn)到山腳C點(diǎn)的距離BC米,斜坡BC的坡度i=1 .小明在山腳的平地F處測(cè)量旗桿的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°

1)求坡角∠BCD;

2)求旗桿AB的高度.

(參考數(shù)值:sin20°≈0.34cos20°≈0.94,tan20°≈0.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)與反比例函數(shù)的圖象相交于點(diǎn)Aa3),且與x軸相交于點(diǎn)B

1)求該反比例函數(shù)的表達(dá)式;(2)若Py軸上的點(diǎn),且△AOP的面積是△AOB的面積的,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)x軸于點(diǎn),,交y軸于點(diǎn)C

求拋物線(xiàn)的解析式;

如圖2,D點(diǎn)坐標(biāo)為,連結(jié)若點(diǎn)H是線(xiàn)段DC上的一個(gè)動(dòng)點(diǎn),求的最小值.

如圖3,連結(jié)AC,過(guò)點(diǎn)Bx軸的垂線(xiàn)l,在第三象限中的拋物線(xiàn)上取點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)AC的垂線(xiàn)交直線(xiàn)l于點(diǎn)E,過(guò)點(diǎn)Ex軸的平行線(xiàn)交AC于點(diǎn)F,已知

求點(diǎn)P的坐標(biāo);

在拋物線(xiàn)上是否存在一點(diǎn)Q,使得成立?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD平分∠BACBC于點(diǎn)DFAD上一點(diǎn),且BFBDBF的延長(zhǎng)線(xiàn)交AC于點(diǎn)E

1)求證:ABADAFAC

2)若∠BAC60°AB4,AC6,求DF的長(zhǎng);

3)若∠BAC60°,∠ACB45°,直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,在五邊形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,試猜想BC,CD,DE之間的數(shù)量關(guān)系.小明經(jīng)過(guò)仔細(xì)思考,得到如下解題思路:

將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即點(diǎn)D,E,F三點(diǎn)共線(xiàn),易證△ACD   ,故BC,CD,DE之間的數(shù)量關(guān)系是   ;

2)如圖2,在四邊形ABCD中,ABAD,∠ABC+D180°,點(diǎn)E,F分別在邊CB,DC的延長(zhǎng)線(xiàn)上,∠EAFBAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

3)如圖3,在△ABC中,∠BAC90°,ABAC,點(diǎn)DE均在邊BC上,且∠DAE45°,若BD2CE3,則DE的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案