【題目】如圖,在菱形 ABCD 中,B 60 ,M 、N 分別為線段 AB 、BC 上的兩點(diǎn),且 BM CN , AN 、CM 相交于點(diǎn) E 。
(1)證明: BCM ≌ CAN 。
(2)求AEM 的度數(shù)。
(3)證明: AE CE DE 。
【答案】(1)見(jiàn)解析;(2)60°; (3)見(jiàn)解析.
【解析】
(1)由題意可得△ABC,△ADC都是等邊三角形,根據(jù)SAS即可證明△BCM≌△CAN.
(2)由△BCM≌△CAN,推出∠BCM=∠CAN,推出∠AEM=∠ACE+∠EAC=∠ACE+∠BCM=60°,作DG⊥AN于G,DH⊥MC交MC的延長(zhǎng)線于H,由△DGA≌△DHC,推出DG=DH,由DG⊥AN,DH⊥MC,推出∠DEG=∠DEH,即可得到∠AED的度數(shù).
(3)由(2)可知,∠GED=60°,在Rt△DEG中,由∠EDG =30°,推出DE=2EG,易證△DEG≌△DEH,推出EG=EH,推出EA+EC=EG+AG+EH-CH,由△DGA≌△DHC,推出GA=CH,推出EA+EC=2EG=DE.
解:(1)∵四邊形ABCD是菱形,
∴AB=BC=CD=AD,
∵∠B=60°,
∴△ACD,△ABC是等邊三角形,
∴BC=AC,∠B=∠ACN=60°,
在△BCM和△CAN中,
,
∴△BCM≌△CAN(SAS).
(2)∵△BCM≌△CAN,
∴∠BCM=∠CAN,
∴∠AEM=∠ACE+∠EAC=∠ACE+∠BCM=60°,
如圖,作DG⊥AN于G,DH⊥MC,交MC的延長(zhǎng)線于H,
∵∠AEM=60°,
∴∠AEC=120°,
∵∠DGE=∠H=90°,
∴∠GEH+∠GDH=180°,
∴∠GDH=∠ADC=60°,
∴∠ADG=∠CDH,
在△DGA和△DHC中,
,
∴△DGA≌△DHC(AAS),
∴DG=DH,
∵DG⊥AN,DH⊥MC,
∴∠DEG=∠DEH,
∴DE平分∠AEC,即∠AED=60°.
(3)證明:由(2)可知,∠GED=60°,
在Rt△DEG中,∵∠EDG=30°,
∴DE=2EG,
在△DEG和△DEH中,
,
∴△DEG≌△DEH(AAS),
∴EG=EH,
∵△DGA≌△DHC,
∴GA=CH,
∴EA+EC=EG+AG+EH-CH=2EG=DE.即EA+EC=ED.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了調(diào)查學(xué)生書寫規(guī)范漢字的能力,從七年級(jí)1000名學(xué)生中隨機(jī)抽選了部分學(xué)生參加測(cè)試,并根據(jù)測(cè)試成績(jī)繪制了如下頻數(shù)分布表和扇形統(tǒng)計(jì)圖(尚不完整)
組別 | 成績(jī)x分 | 頻數(shù)(人數(shù)) |
第1組 | x<60 | 4 |
第2組 | 60≤x<70 | a |
第3組 | 70≤x<80 | 20 |
第4組 | 80≤x<90 | b |
第5組 | 90≤x<100 | 10 |
請(qǐng)結(jié)合圖表完成下列各題
(1)填空:表中a的值為_______,b的值為_______,扇形統(tǒng)計(jì)圖中表示第1組所對(duì)應(yīng)的圓心角度數(shù)為_______.
(2)若測(cè)試成績(jī)不低于80分為優(yōu)秀,請(qǐng)你估計(jì)從該校七年級(jí)學(xué)生中隨機(jī)抽查一個(gè)學(xué)生,他是規(guī)范漢字書寫優(yōu)秀的概率是_______;
(3)若測(cè)試成績(jī)?cè)?/span>60~80分之間(含60分,不含80分)為合格,請(qǐng)你估計(jì)則該校七年級(jí)學(xué)生規(guī)范漢字書寫不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下問(wèn)題中的數(shù)據(jù)在美國(guó)的歷史上都是真實(shí)的,試對(duì)此現(xiàn)象進(jìn)行分析:
(1) 亞利桑那州歷來(lái)是一個(gè)風(fēng)景優(yōu)美,氣候宜人的地方,尤其有利于肺結(jié)核病人的療養(yǎng)、康復(fù).可是十九世紀(jì)有一位統(tǒng)計(jì)學(xué)家發(fā)現(xiàn),在亞利桑那州死于肺結(jié)核的人數(shù)遠(yuǎn)較其他州多,患者比例普遍達(dá)到其他州的 至 倍.人們一度對(duì)這里優(yōu)美的環(huán)境望而卻步,給當(dāng)?shù)氐穆糜巍燄B(yǎng)業(yè)造成了巨大的影響.
(2) 上個(gè)世紀(jì),某地的房產(chǎn)開(kāi)發(fā)商曾對(duì)當(dāng)時(shí)每戶家庭人數(shù)進(jìn)行過(guò)較大規(guī)模的調(diào)查,得到的結(jié)論是平均每戶 人.據(jù)此,在當(dāng)年的住房設(shè)計(jì)中主要考慮了適宜 人家庭居住的戶型,結(jié)果造成了滯銷,而適宜 至 人家庭居住的小戶型和 人以上的大戶型卻供不應(yīng)求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知 AD 與 BC 相交于 E ,1 2 3, BD CD, ADB 90, CH AB于 H , CH 交 AD 于 F 。
(1)求證: CD∥ AB ;
(2)求證: BDE ≌ ACE ;
(3)若O 為 AB 中點(diǎn),求證:OF= BE 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:b是最小的正整數(shù),且a、b滿足,請(qǐng)回答問(wèn)題:
(1)請(qǐng)直接寫出a、b、c的值: a=______; b=________; c=________.
(2)a、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB,試計(jì)算此時(shí)BC—AB的值.
(3)在(1)(2)的條件下,點(diǎn)A、B、C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒3個(gè)單位長(zhǎng)度和x(x>3)個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),請(qǐng)問(wèn):是否存在x,使BC-AB的值隨著時(shí)間t的變化而不變,若存在求出x;不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】人民商場(chǎng)準(zhǔn)備購(gòu)進(jìn)甲、乙兩種牛奶進(jìn)行銷售,若甲種牛奶的進(jìn)價(jià)比乙種牛奶的進(jìn)價(jià)每件少5元,其用90元購(gòu)進(jìn)甲種牛奶的數(shù)量與用100元購(gòu)進(jìn)乙種牛奶的數(shù)量相同.
(1)求甲種牛奶、乙種牛奶的進(jìn)價(jià)分別是多少元?
(2)若該商場(chǎng)購(gòu)進(jìn)甲種牛奶的數(shù)量是乙種牛奶的3倍少5件,該商場(chǎng)甲種牛奶的銷售價(jià)格為49元,乙種牛奶的銷售價(jià)格為每件55元,則購(gòu)進(jìn)的甲、乙兩種牛奶全部售出后,可使銷售的總利潤(rùn)(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))等于371元,請(qǐng)通過(guò)計(jì)算求出該商場(chǎng)購(gòu)進(jìn)甲、乙兩種牛奶各自多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點(diǎn),且AB=CD.結(jié)論:①EG⊥FH;②四邊形EFGH是矩形;③HF平分∠EHG;④EGBC;⑤四邊形EFGH的周長(zhǎng)等于2AB.其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十·一”黃金周期間,武漢動(dòng)物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化單位:萬(wàn)人 | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若9月30日的游客人數(shù)記為,請(qǐng)用的代數(shù)式表示10月2日的游客人數(shù)?
(2)請(qǐng)判斷七天內(nèi)游客人數(shù)最多的是哪天?請(qǐng)說(shuō)明理由。
(3)若9月30日的游客人數(shù)為2萬(wàn)人,門票每人10元。問(wèn)黃金周期間武漢動(dòng)物園門票收入是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com