【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.

①畫出與△ABC關于y軸對稱的△A1B1C1 , 求點C1的坐標。
②以原點O為位似中心,在第四象限畫一個△A2B2C2 , 使它與△ABC位似,并且△A2B2C2與△ABC的相似比為2:1.

【答案】解:如圖,△A1B1C1、△A2B2C2即為①②所求三角形.

∴點C1的坐標為:(1,4).


【解析】解:(1)如圖,△A1B1C1即為所求三角形,點C1的坐標為(1,4),

所以答案是:(1,4);
(2)如圖,△A2B2C2即為所求三角形.

【考點精析】掌握作圖-位似變換是解答本題的根本,需要知道對應點到位似中心的距離比就是位似比,對應線段的比等于位似比,位似比也有順序;已知圖形的位似圖形有兩個,在位似中心的兩側(cè)各有一個.位似中心,位似比是它的兩要素.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的內(nèi)接正多邊形的一邊,已知∠OAB=70°,則這個正多邊形的內(nèi)角和為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以的速度行駛,在行駛過程中,這列火車離A地的路程與行駛時間之間的函數(shù)關系式是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】公元前5世紀,畢達哥拉斯學派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導致了第一次數(shù)學危機, 是無理數(shù)的證明如下: 假設 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個正整數(shù)).于是( 2=( 2=2,所以,q2=2p2 . 于是q2是偶數(shù),進而q是偶數(shù),從而可設q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是(
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學歸納法

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是定圓O的內(nèi)接三角形,AD為△ABC的高線,AE平分∠BAC交⊙O于E,交BC于G,連OE交BC于F,連OA,在下列結(jié)論中,①CE=2EF,②△ABG∽△AEC,③∠BAO=∠DAC,④ 為常量.其中正確的有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運回,已知該公司租車從基地到公司的運輸費為5000元.

(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關系式,并寫出自變量x的取值范圍.

(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校興趣小組對網(wǎng)上吐糟較為頻繁的“醫(yī)患關系”產(chǎn)生了興趣,利用節(jié)假日在某社區(qū)開展了“造成醫(yī)患關系緊張的原因”的問卷調(diào)查.

造成醫(yī)患關系緊張的原因(單選)
A.藥價高
B.檢測項目太多且收費太高
C.住院報銷比例低
D.醫(yī)療費與個人收入不相稱
E.其他

根據(jù)調(diào)查結(jié)果繪制出了如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的總?cè)藬?shù)為人;
(2)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角的度數(shù)為;
(3)補全條形統(tǒng)計圖;
(4)若該市有1000萬人,請你估計選D的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖,設,,,求證:;

2)若把(1)的題設中的與結(jié)論中的對調(diào)后,命題還成立嗎?說明理由;

3)若把(1)的題設中的與結(jié)論中的對調(diào)后,命題還成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點,點E、F分別為BO、DO的中點,連接AF,CE.

(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點分別在DB和BD的延長線上時,且滿足BE=DF,上述結(jié)論仍然成立嗎?請說明理由.

查看答案和解析>>

同步練習冊答案