【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段的最小覆蓋圓就是以線段為直徑的圓.
(1)請分別作出圖①中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)三角形的最小覆蓋圓有何規(guī)律?請直接寫出你所得到的結(jié)論(不要求證明);
(3)某城市有四個(gè)小區(qū)(其位置如圖②所示),現(xiàn)擬建一個(gè)手機(jī)信號基站,為了使這四個(gè)小區(qū)居民的手機(jī)都能有信號,且使基站所需發(fā)射功率最小(距離越小,所需功率越小),此基站應(yīng)建在何處?請寫出你的結(jié)論并說明研究思路.
【答案】(1)圖形見解析;(2)銳角三角形的最小覆蓋圓是其外接圓,鈍角三角形的最小覆蓋圓是以其最長邊為直徑的圓,直角三角形的最小覆蓋圓二者均可.(3)的外接圓的圓心為手機(jī)信號基站所在位置.
【解析】
試題分析:(1)畫出△ABC的外接圓即可;(2)銳角三角形的最小覆蓋圓是其外接圓,鈍角三角形的最小覆蓋圓是以其最長邊為直徑的圓,直角三角形的最小覆蓋圓二者均可.(3)的外接圓的圓心為手機(jī)信號基站所在位置.
試題解析:(1)如圖所示:
(2)銳角三角形的最小覆蓋圓是其外接圓,鈍角三角形的最小覆蓋圓是以其最長邊為直徑的圓,直角三角形的最小覆蓋圓二者均可.
(說明:寫出三角形的最小覆蓋圓是其外接圓,或是以其最長邊為直徑的圓,各給1分)
(3)結(jié)論:的外接圓的圓心為手機(jī)信號基站所在位置.
研究思路:
a.手機(jī)信號基站應(yīng)建在四邊形的最小覆蓋圓的圓心處;所以先考慮四邊形的外接圓,因?yàn)閷遣换パa(bǔ),所以該四邊形沒有外接圓;
b.作四邊形對角線,將四邊形分割成兩個(gè)三角形,考慮其中一個(gè)三角形的最小覆蓋圓能否覆蓋另一個(gè)三角形,從而將四邊形最小覆蓋圓問題轉(zhuǎn)化為三角形最小覆蓋圓問題來研究;
c.若沿分割,因?yàn)?/span>,所以這兩個(gè)三角形的最小覆蓋圓均不能完全覆蓋另一個(gè)三角形;
d.若沿分割,因?yàn)?/span>,所以存在一個(gè)三角形的最小覆蓋圓能完全覆蓋另一個(gè)三角形的情況,又因?yàn)?/span>,所以的最小覆蓋圓,即其外接圓能完全覆蓋,因此的外接圓的圓心為手機(jī)信號基站所在位置.
(說明:1.學(xué)生的答案只要涉及到將四邊形問題轉(zhuǎn)化為三角形問題,可以給第6分;
2.若學(xué)生答案含有以下情況之一,并借此分析沿分割和沿分割的差異性,均可以給第7分:
①比較四邊形對角和的數(shù)量關(guān)系;
②同弧所對的圓周角的度數(shù)關(guān)系;
③畫出四個(gè)三角形的最小覆蓋圓,通過觀察或測量,比較大小后發(fā)現(xiàn)的外接圓的圓心為手機(jī)信號站
所在位置.
3.重在判斷學(xué)生思維的方向,不過多的要求語言的規(guī)范和思維的嚴(yán)謹(jǐn).)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)D作DF∥BC,交AB的延長線于點(diǎn)F.
(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.
(1)求證方程有兩個(gè)不相等的實(shí)數(shù)根.
(2)當(dāng)m為何值時(shí),方程的兩根互為相反數(shù)?并求出此時(shí)方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形為正方形,點(diǎn)的坐標(biāo)為,動點(diǎn)沿邊從向以每秒的速度運(yùn)動,同時(shí)動點(diǎn)沿邊從向以同樣的速度運(yùn)動,連接、交于點(diǎn).
(1)試探索線段、的關(guān)系,寫出你的結(jié)論并說明理由;
(2)連接、,分別取、、、的中點(diǎn)、、、,則四邊形是什么特殊平行四邊形?請?jiān)趫D①中補(bǔ)全圖形,并說明理由.
(3)如圖②當(dāng)點(diǎn)運(yùn)動到中點(diǎn)時(shí),點(diǎn)是直線上任意一點(diǎn),點(diǎn)是平面內(nèi)任意一點(diǎn),是否存在點(diǎn)使以、、、為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,,點(diǎn),,分別在邊,,上,且垂直.
(1)如圖1,求證:;
(2)如圖2,平移線段至線段,交于點(diǎn),圖中陰影部分的面積與正方形的面積之比為,求的周長;
(3)如圖3,若,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)至線段,連接,則線段的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
A.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ΔABC中,∠BAC=120°,AB=AC=6cm,點(diǎn)M從點(diǎn)A出發(fā)沿AB方向以每秒一個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動,與此同時(shí)點(diǎn)N也從點(diǎn)A出發(fā)沿AC方向以相同的速度向點(diǎn)C勻速運(yùn)動,過點(diǎn)N作DN∥AB,交BC于點(diǎn)D,連接MD,設(shè)運(yùn)動的時(shí)間是t秒().
(1)填空:____________;
(2)是否存在某一時(shí)刻,使得四邊形MBDN的面積與三角形ABC的面積比為4:9,若存在求值,若不存在請說明理由;
(3)當(dāng)為何值時(shí),ΔMND為等腰三角形?請直接寫出符合條件的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過點(diǎn),對稱軸為直線,
下列結(jié)論:
①;
②;
③;
④若點(diǎn),點(diǎn),點(diǎn)在該函數(shù)圖象上,則;
⑤若方程的兩根為和,且,則.
其中正確的結(jié)論有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形OABC繞頂點(diǎn)C(0,5)逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到CO′A′B′位置時(shí),邊O′A′交邊AB于D,且A′D=2,AD=4.
(1)求BC長;
(2)求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com