已知關(guān)于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若這個(gè)方程有實(shí)數(shù)根,求k的取值范圍;
(2)若這個(gè)方程有一個(gè)根為1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的兩個(gè)根為橫坐標(biāo)、縱坐標(biāo)的點(diǎn)恰在反比例函數(shù)的圖象上,求滿足條件的m的最小值.
【答案】分析:(1)若一元二次方程有實(shí)數(shù)根,則根的判別式△=b2-4ac≥0,建立關(guān)于k的不等式,求出k的取值范圍.
(2)將x=1代入方程,得到關(guān)于k的方程,求出即可,
(3)寫出兩根之積,兩根之積等于m,進(jìn)而求出m的最小值.
解答:解:(1)由題意得△=[-2(k-3)]2-4×(k2-4k-1)≥0
化簡得-2k+10≥0,解得k≤5.
(2)將1代入方程,整理得k2-6k+6=0,解這個(gè)方程得,
(3)設(shè)方程x2-2(k-3)x+k2-4k-1=0的兩個(gè)根為x1,x2
根據(jù)題意得m=x1x2.又由一元二次方程根與系數(shù)的關(guān)系得x1x2=k2-4k-1,
那么m=k2-4k-1=(k-2)2-5,所以,當(dāng)k=2時(shí)m取得最小值-5.
點(diǎn)評:一元二次方程根的判別式和根與系數(shù)的關(guān)系,是一個(gè)綜合性的題目,也是一個(gè)難度中等的題目.總結(jié):一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、已知關(guān)于x的方程x2+kx+1=0和x2-x-k=0有一個(gè)根相同,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•綿陽)已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請求出方程的另一個(gè)根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•西城區(qū)二模)已知關(guān)于x的方程x2+3x=8-m有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的最大整數(shù)是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長.

查看答案和解析>>

同步練習(xí)冊答案